Soil & Water Res., 2021, 16(4):250-255 | DOI: 10.17221/63/2020-SWR
Insights into the development of electrokinetic remediation technology: A bibliometric analysisOriginal Paper
- School of Resources and Environmental Science, Wuhan University, Wuhan, P.R. China
Electrokinetic remediation (EKR) is a powerful technique aimed at pollutant removal in soil, sludge, mine tailings, and so on. In the current work, we performed a bibliometric analysis of the research on EKR for the period of 1900-2018 on the basis of the core database of the Science Citation Index Expanded. In addition to a basic analysis of the research characteristics, keywords were analysed for four major participants: USA, China, Spain, and South Korea. The periods of 1990-2001, 2002-2008, and 2009-2018 were studied using the keyword analysis method to gain insights into the development of EKR and predict its future trends. The results revealed that the related research field in the USA was broad during the study periods. Meanwhile, China was interested in fluorine pollution and contamination in red soil. Spain paid close attention to pollution due to agricultural contamination. South Korea focused on radioactive element pollution. The number of papers published over a period of 28 years increased steadily and continued to rise after 2008. The combined techniques of EKR + phytoremediation and EKR + bioremediation were successively utilised by scholars over time, and the latter is expected to demonstrate vitality in the future.
Keywords: bibliometrics; EKR; electrokinetics; remediation technology
Published: October 20, 2021 Show citation
References
- Acar Y., Alshawabkeh A. (1993): Principles of electrokinetic remediation. Environmental Science and Technology, 27: 2638-2647.
Go to original source...
- Acar Y.B., Gale R.J., Alshawabkeh A.N., Marks R.E., Puppala S., Bricka M., Parker R. (1995): Electrokinetic remediation: basics and technology status. Journal of Hazardous Materials, 40: 117-137.
Go to original source...
- Al-Hamdan A.Z., Reddy K.R. (2008): Electrokinetic remediation modeling incorporating geochemical effects. Journal of Geotechnical and Geoenvironmental Engineering, 134: 91-105.
Go to original source...
- Alshawabkeh A.N., Acar Y.B. (1996): Electrokinetic remediation. II: Theoretical model. Journal of Geotechnical and Geoenvironmental Engineering, 122: 186-196.
Go to original source...
- Baek K., Kim D.H., Park S.W., Ryu B.G., Bajargal T., Yang J.S. (2009): Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 161: 457-462.
Go to original source...
Go to PubMed...
- Baes C.F., Sharp R.D. (1983): A proposal for estimation of soil leaching and leaching constants for use in assessment models I. Journal of Environmental Quality, 12: 17-28.
Go to original source...
- Baraud F., Tellier S., Astruc M. (1999): Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. Journal of Hazardous Materials, 64: 263-281.
Go to original source...
- Bokulich N.A., Mills D.A. (2012): Next-generation approaches to the microbial ecology of food fermentations. BMB Reports, 45: 377-389.
Go to original source...
Go to PubMed...
- Chen W., Mei P. (2013): Electrochemical Technology for Environmental Pollution Control. Beijing, Petroleum Industry Press: 41-46.
- Diana C.G., Swartzbaugh J.T., Weisman A.W. (1990): The use of electrokinetics for hazardous waste site remediation. Journal of the Air and Waste Management Association, 40: 1670-1676.
Go to original source...
- Kim W.S., Park G.Y., Kim D.H., Jung H.B., Ko S.H., Bake K. (2012): In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: influence of electrode configuration. Electrochimica Acta, 86: 89-95.
Go to original source...
- Lee H.H., Yang J.W. (2000): A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. Journal of Hazardous Materials, 77: 227-240.
Go to original source...
Go to PubMed...
- Li J., Hou Y., Wang P., Yang B. (2019): A review of carbon capture and storage project investment and operational decision-making based on bibliometrics. Energies, 12: 23.
Go to original source...
- Liu L., Li W., Song W., Guo M. (2018): Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633: 206-219.
Go to original source...
Go to PubMed...
- Luo K.L., Li L., Zhang S.X. (2011): Coal-burning roasted corn and chili as the cause of dental fluorosis for children in southwestern China. Journal of Hazardous Materials, 185: 1340-1347.
Go to original source...
Go to PubMed...
- Pritchard A. (1969): Statistical bibliography or bibliometrics. Journal of Documentation, 25: 348-349.
Go to original source...
- Shan C., Falta R.W., Javandel I. (1992): Analytical solutions for steady state gas flow to a soil vapor extraction well. Water Resources Research, 28: 1105-1120.
Go to original source...
- Ugaz A., Puppala S., Gale R.J., Acar Y.B. (1994): Electrokinetic soil processing complicating features of electrokinetic remediation of soils and slurries: saturation effects and the role of the cathode electrolysis. Chemical Engineering Communications, 129: 183-200.
Go to original source...
- Vidali M. (2001): Bioremediation: An overview. Pure and Applied Chemistry, 73: 1163-1172.
Go to original source...
- Vinegar H.J., Stegemeier G.L. (2002): Low Cost, Self Regulating Heater for Use in an in Situ Thermal Desorption Soil Remediation System. US Patent, 6 485 232, 26 November 2002.
- Virkutyt J., Sillanpaa M., Latostenmaa P. (2002): Electrokinetic soil remediation - critical overview. Science of the Total Environment, 289: 97-121.
Go to original source...
Go to PubMed...
- Wang Y.W., Hong S., Wang Y.F., Gong X., He C., Lu Z.D., Zhan B. (2019): What is the difference in global research on Central Asia before and after the collapse of the USSR: A bibliometric analysis. Scientometrics, 119: 909-930.
Go to original source...
- Wasay S.A., Barrington S., Tokunaga S. (2001): Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air and Soil Pollution, 127: 301-314.
Go to original source...
- Zhang H.M., Wang B.R., Xu M.G., Fan T.L. (2009): Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere, 19: 199-207.
Go to original source...
- Zhang X.H., Wang H., Luo Q.S. (2001): Electrokinetics in remediation of contaminated groundwater and soils. Advances in Water Science, 12: 249-255.
- Zhou D.M., Deng C.F., Cang L. (2004): Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere, 56: 265-273.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.