Soil & Water Res., 2024, 19(4):229-243 | DOI: 10.17221/118/2024-SWR
How to measure soil quality? A case study conducted on cropland in the Czech RepublicOriginal Paper
- 1 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- 2 Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
This work presents the advantages and risks of selected soil quality criteria using data from the monitoring of agricultural soils in the Czech Republic. Soil samples were taken from 71 sites covering various soil types. Basic soil parameters and mid-infrared spectra were measured. Indicators describing the quality of soil organic matter (SOM), and soil were calculated. The results show that soil types differ significantly in the qualitative indicators of soil organic matter. More acidic soils with lower clay content contain lower proportions of aromatic and higher proportions of aliphatic organic compounds than neutral soils with higher clay particles content. These soils differ little in total carbon content and C/N ratio but considerably in C/clay ratio. Cambisols are the least degraded soils in the Czech Republic in terms of C/clay ratio, which is controversial in many respects. The results indicate that more aliphatic organic matter is important for the SOM content in the upper part of the agricultural soil, and more aromatic organic matter is mainly bound to the clay fraction. The results raise questions about the suitability of uniform C/clay target values proposed in European legislation as a criterion for assessing soil degradation due to carbon loss.
Keywords: agricultural soils; infrared spectroscopy; soil organic carbon; soil texture
Received: September 25, 2024; Revised: October 30, 2024; Accepted: November 11, 2024; Prepublished online: November 20, 2024; Published: November 27, 2024 Show citation
References
- Agnelli A., Celi L., Degl'Innocenti A., Corti G., Ugolini F.C. (2000): Chemical and spectroscopic characterization of the humic substances from sandstone-derived rock fragments. Soil Science, 165: 314-326.
Go to original source...
- Amorim H.C.S., Hurtarte L.C.C., Souza I.F., Zinn Y.L. (2022): C : N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma, 425: 116026.
Go to original source...
- Amorim H.C.S., Araujo M.A., Lal R., Zinn Y.L. (2023): What C : N ratios in soil particle-size fractions really say: N is preferentially sorbed by clays over organic C. Catena, 230: 107230.
Go to original source...
- Angst G., Mueller K.E., Nierop K.G.J., Simpson M.J. (2021): Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156: 108189.
Go to original source...
- Artz R.R.E., Chapman S.J., Campbell C.D. (2006): Substrate utilization profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biology and Biochemistry, 38: 2958-2962.
Go to original source...
- Bai Z., Caspari T., Ruiperez Gonzalez M., Batjes N.H., Mäder P., Bünemann E.K., de Goede R., Brussaard L., Xu M., Santos Ferreira C.S., Reintam E., Fan H., Mihelič R., Glavan M., Tóth Z. (2018): Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems and Environment, 265: 1-7.
Go to original source...
- Bi R., Lu Q., Yuan T., Zhou S., Yuan Y., Cai Y. (2013): Electrochemical and spectroscopic characteristics of dissolved organic matter in a forest soil profile. Research Journal of Environmental Sciences, 25: 2093-2101.
Go to original source...
Go to PubMed...
- Bispo A., Andersen L., Angers D.A., Bernoux M., Brossard M., Cécillon L., Comans R. N.J., Harmsen J., Jonassen K., Lamé F., Lhuillery C., Maly S., Martin E., Mcelnea A.E., Sakai H., Watabe Y., Eglin T.K. (2017): Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: Do we have the necessary standards? Frontiers in Environmental Science, 5: 41.
Go to original source...
- Brady N.C., Weil R.R. (2008): The Nature and Properties of Soils. New Jersey, Pearson Prentice Hall.
- Cornu S., Keesstra S., Bispo A., Fantappie M., van Egmond F., Smreczak B., Wawer R., Pavlů L., Sobocká J., Bakacsi Z., Farkas-Iványi K., Molnár S., Moller A., Madenoglu S., Feiziene D., Oorts K., Schneider F., Gonçalves M., Mano R., Garland G., Skalský R., O'Sullivan L.M., Kasparinskis R., Chenu C. (2023): National soil data in EU countries, where are we? European Journal of Soil Science, 74: e13398.
Go to original source...
- Cunha T.J.F., Novotny E.H., Madari B.E., Martin-Neto L., De O., Rezende M.O., Canelas L.P., De M., Benites V. (2009): Spectroscopy characterization of humic acids isolated from Amazonian Dark Earth Soils (Terra Preta de Índio). In: Woods W.I., Teixeira W.G., Lehman J., Steiner C., Winklerprins A., Rebellato L. (eds.): Amazonian Dark Earths: Wim Sombroek's Vision. Berlin, Springer: 363-372.
Go to original source...
- Dexter A.R., Richard G., Arrouays D., Czyz E.A., Jolivet C., Duval O. (2008): Complexed organic matter controls soil physical properties. Geoderma, 144: 620-627.
Go to original source...
- Doran J.W. (2002): Soil health and global sustainability: Translating science into practice. Agriculture, Ecosystems and Environment, 88: 119-127.
Go to original source...
- Doran J.W., Sarrantonio M., Liebig M. (1996): Soil health and sustainability. Advances in Agronomy, 56: 1-54.
Go to original source...
- Ellerbrock R.H., Gerke H.H., Bachmann J., Goebel M.O. (2005): Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69: 57-66.
Go to original source...
- Feng X., Simpson A.J., Simpson M.J. (2005): Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry, 36: 1553-1566.
Go to original source...
- Gholizadeh A., Žížala D., Saberioon M., Borůvka L. (2018): Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment, 218: 89-103.
Go to original source...
- Gholizadeh A., Viscarra Rossel R.A., Saberioon M., Borův-ka L., Pavlů L. (2021): National-scale forest soil carbon content characterizing using reflectance spectroscopy. Geoderma, 385: 114832.
Go to original source...
- Haberhauer G., Rafferty B., Strebl F., Gerzabek M.H. (1998): Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma, 83: 331-342.
Go to original source...
- IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th Ed. Vienna, International Union of Soil Sciences (IUSS).
- Jakšík O., Kodešová R., Kubiš A., Stehlíková I., Drábek O., Kapička A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127: 287-299.
Go to original source...
- Jamroz E., Jerzykiewicz M. (2022): Humic fractions as indicators of soil organic matter responses to clear-cutting in mountain and lowland conditions of southwestern Poland. Land Degradation and Development, 33: 368-378.
Go to original source...
- Johannes A., Matter A., Schulin R., Weisskopf P., Baveye P.C., Boivin P. (2017): Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma, 302: 14-21.
Go to original source...
- Kodešová R., Rohošková M., Žigová A. (2009): Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64: 550-554.
Go to original source...
- Kopittke P.M., Hernandez-Soriano M.C., Dalal R.C., Finn D., Menzies N.W., Hoeschen C., Mueller C.W. (2018): Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Global Change Biology, 24: 1762-1770.
Go to original source...
Go to PubMed...
- Lavallee J.M., Soong J.L., Cotrufo M.F. (2020): Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26: 261-273.
Go to original source...
Go to PubMed...
- Lehmann J., Kleber M. (2015): The contentious nature of soil organic matter. Nature, 528: 60-68.
Go to original source...
Go to PubMed...
- Leue M., Ellerbrock R.H., Gerke H.H. (2010): DRIFT mapping of organic matter composition at intact soil aggregate surfaces. Vadose Zone Journal, 9: 317-324.
Go to original source...
- Machado W., Franchini J.C., Guimarães M.F., Filho J.T. (2020): Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon, 6: e04078.
Go to original source...
Go to PubMed...
- Madejová J. (2003): FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31: 1-10.
Go to original source...
- Matschullat J., Reimann C., Birke M., dos Santos Carvalho D. (2018): GEMAS: CNS concentrations and C/N ratios in European agricultural soil. Science of the Total Environment, 627: 975-984.
Go to original source...
Go to PubMed...
- McCarty G.W., Reeves J.B., Reeves V.B., Follett R.F., Kimble J.M. (2002): Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66: 640-646.
Go to original source...
- Nazaries L., Singh B.P., Sarker J.R., Fang Y., Klein M., Singh B.K. (2021): The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agriculture, Ecosystems and Environment, 307: 107206.
Go to original source...
- Nierop K.G.J., Van Bergen P.F., Buurman P., Van Lagen B. (2005): NaOH and Na4P2O7 extractable organic matter in two allophanic volcanic ash soils of the Azores Islands - A pyrolysis GC/MS study. Geoderma, 127: 36-51.
Go to original source...
- Pavlů L., Mühlhanselová M. (2018): Differences among humic acids structure of various soil studied by DRIFT. Soil and Water Research, 1: 29-35.
Go to original source...
- Pavlů L., Kodešová R., Fér M., Nikodem A., Němec F., Prokeš R. (2021a): The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil and Tillage Research, 205: 104748.
Go to original source...
- Pavlů L., Sobocká J., Borůvka L., Penížek V. et al. (2021b): Towards climate-smart sustainable management of agricultural soils. Deliverable 2.2. Stocktaking on soil quality indicators and associated decision support tools, including ICT tools. Report from EJP SOIL European Joint Program. Available on www.ejpsoil.eu (accessed 16 September 2024).
- Pavlů L., Zádorová T., Pavlů J., Tejnecký V., Drábek O., Reyes Rojas J., Thai S., Penížek V. (2023a): Prediction of the distribution of soil properties in deep Colluvisols in different pedogeographic regions (Czech Republic) using diffuse reflectance infrared spectroscopy. Soil and Tillage Research, 234: 105844.
Go to original source...
- Pavlů L., Balík J., Procházková S., Vokurková P., Galušková I., Sedlář O. (2023b): Soil organic matter quality of variously managed agricultural soil in the Czech Republic evaluated using DRIFT spectroscopy. Soil and Water Research, 18: 281-291.
Go to original source...
- Piccolo A. (2002): The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advance Agronomy, 75: 57-134.
Go to original source...
- Prout J.M., Shepherd K.D., McGrath S.P., Kirk G.J.D., Hassall K.L., Haefele S.M. (2022): Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time. Scientific Reports, 12: 5162.
Go to original source...
Go to PubMed...
- Prudil J., Pospíšilová L., Dryšlová T., Barančíková G., Smutný V., Sedlák L., Ryant P., Hlavinka P., Trnka M., Halas J., Koco Š., Takáč J., Boturová K., Dušková S., Neudert L., Rábek M. (2023): Assessment of carbon sequestration as affected by different management practices using the RothC model. Plant Soil and Environment, 69: 532-544.
Go to original source...
- Rabot E., Saby N.P.A., Martin M.P., Pierre Barré P., Chenu C., Cousin I., Arrouays D., Angers D., Bispo A. (2024): Relevance of the organic carbon to clay ratio as a national soil health indicator. Geoderma, 443: 116829.
Go to original source...
- Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. (2011): Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56.
Go to original source...
Go to PubMed...
- Stevenson F.J. (1994): Humus Chemistry, Genesis, Composition, Reactions. 2nd Ed. New York, John Wiley and Sons, Inc.
- Sotáková S. (1982):Organic matter and soil fertility. Bratislava, Príroda. (in Slovak)
- Thai S., Davídek T., Pavlů L. (2022): Causes clarification of the soil aggregates stability on mulched soil. Soil and Water Research, 17: 91-99.
Go to original source...
- Thevenot M., Dignac M.-F., Rumpel C. (2010): Fate of lignins in soils: A review. Soil Biology and Biochemistry, 42: 1200-1211.
Go to original source...
- Tonneijck F.H., Jansen B., Nierop K.G.J., Verstraten J.M., Sevink J., De Lange L. (2010): Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science, 61: 392-405.
Go to original source...
- Vancampenhout K., De Vos B., Wouters K., Swennen R., Buurman P., Deckers J. (2012): Organic matter of subsoil horizons under broadleaved forest: Highly processed or labile and plant-derived? Soil Biology and Biochemistry, 50: 40-46.
Go to original source...
- Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59-75.
Go to original source...
- von Lützow M., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H. (2006): Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - A review. European Journal of Soil Science, 57: 426-445.
Go to original source...
- Wang Q., Zhu Y., Xu L., Chen B., Liu Ch., Ma X., Meng Q., Liu B., Huang Z., Jiao Y., Yuan Y. (2023): Responses of soil humus composition and humic acid structural characteristics to the addition of different types of biochar in Phaeozems. Journal of Soil Science and Plant Nutrition, 23: 1611-1618.
Go to original source...
- Xu S., Yang Z., Sun G., Zhang Q., Wang Y., Zeng H., Simpson M.J., Wang J. (2024): Aridity affects soil organic carbon concentration and chemical stability by different forest types and soil processes across Chinese natural forests, Science of the Total Environment, 944: 174002.
Go to original source...
Go to PubMed...
- Yang Z., Ohno T., Singh B. (2024): Effect of land use change on molecular composition and concentration of organic matter in an Oxisol. Environmental Science and Ecotechnology, 58: 10095-10107.
Go to original source...
Go to PubMed...
- Zádorová T., Jakšík O., Kodešová R., Penížek V. (2011): Influence of terrain attributes and soil properties on soil aggregate stability. Soil and Water Research, 6: 111-119.
Go to original source...
- Zádorová T., Penížek V., Lisá L., Koubová M., Žížala D., Tejnecký V., Drábek O., Kodešová R., Fér M., Klement A., Nikodem A., Vokurková P., Pavlů L., Vaněk A., Moska P. (2023): Formation of Colluvisols in different soil regions and slope positions (Czechia): Stratification and upbuilding of colluvial profiles. Catena, 221: 106755.
Go to original source...
- Zimmermann M., Leifeld J., Fuhrer J. (2007): Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry, 39: 224-231.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.