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Abstract: The determination of the saturated hydraulic conductivity Ks on a field scale presents a challenge in which 
several variables have to be considered. As there is no benchmark or reference method for the Ks determination, the 
suitability of each available method has to be evaluated. This study is aimed at the functional evaluation of three publicly 
available types of pedotransfer functions (PTFs) with different levels of utilised predictors. In total, ten PTF models were 
applied to the 56 data sets including the measured Ks value and the required predictors (% sand, silt and clay particles, 
dry bulk density, and organic matter/organic carbon content). A single agricultural field with a relatively homogenous 
particle size distribution was selected for the study to evaluate the ability of  the PTF to reflect the variability of Ks. 
The correlation coefficient, coefficient of  determination, mean error, and root mean square error were determined 
to evaluate the Ks prediction quality. The results showed a high variability in Ks within the field; the measured Ks va-
lues ranged between 10 and 1261 cm/day. Although the tested PTF models are based on a robust background of soil 
databases, they could not provide estimates with satisfactory accuracy unless local soil data were incorporated into the 
PTF development. 
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Agricultural soils are subjected to the cultivation 
and fertilisation of the soil surface layer which re-
sults in changes to the soil hydrophysical properties. 
Plant growth and root development together with 
the activity of soil fauna result in a relatively high 
variation in the hydraulic properties of agricultural 
soils. In addition to that, the drying of the soil and 
the creation of cracks contribute to the formation 
of preferential pathways, allowing faster water infil-
tration and reaching deeper soil layers (Štekauerová 
& Mikulec 2009). Undesirable significant herbicide 

or pesticide contents can be leached from the surface 
to the deeper layers and/or to the groundwater (Fait 
et al. 2010; Willkommen et al. 2021). One of the most 
important hydraulic properties of each soil is the 
saturated hydraulic conductivity Ks. It is a widely 
used characteristic in soil water and solute trans-
port models incorporated in a number of different 
environmental, hydrological and water management 
applications (Schaap et al. 2001; Araya & Ghezzehei 
2019; Tuffour et al. 2019). Under most field conditions, 
soils are not only heterogeneous, but also anisotropic. 
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The heterogeneity of the soil can be defined by the 
spatial variability of its properties, e.g., Ks. Anisot-
ropy, on the other hand, leads to different property 
exhibitions in different directions; measured Ks values 
in the vertical direction may be higher or lower than 
those measured in the horizontal direction. There are 
several methods for the Ks measurement; in the field 
and in the laboratory by using different types of infil-
trometers. Ks in-situ can be determined by, e.g., the 
Double-ring infiltrometer (Parr & Bertrand 1960), 
Hood infiltrometer (Schwärzel & Punzel 2007), Guelph 
infiltrometer (Soilmoisture Equipment Corp., USA), 
and SATURO (METER Group Inc., USA). Ks in the 
laboratory can be determined by a constant or falling 
head apparatus such as a KSAT device (METER Group 
Inc.). Unfortunately, there is no standard procedure for 
the Ks determination, to which the others can be related 
to or compared with. Direct measurement can involve 
an unreasonably high number of replications to account 
for the spatial variability of Ks, especially when large 
and/or heterogeneous areas are being characterised. 
That is why indirect Ks estimation methods of have been 
developed. Bouma and van Lanen (1987) introduced 
the term “transfer functions” and later Bouma (1989) 
introduced the term “pedotransfer functions (PTFs)” 
for these estimation methods. Minasny et al. (1999) 
described PTF as a translation of data “we have” into 
data “we need”. Ks estimations are based on routinely 
measured and easily available soil properties called 
predictors, such as the particle size distribution data, 
dry bulk density, and organic matter/organic carbon 
content. Over the last 30 years, numerous PTFs have 
been proposed and their estimation quality has been 
evaluated and compared mainly for the prediction 
of soil water retention parameters; however, a review 
by Zhang and Shaap (2019) provided an insight into 
the history of Ks predictions, and discussed the re-
quired predictors and statistical techniques for the 
PTF development. 

There are many types and forms of PTF; PTF can 
be grouped according to some basic criteria. Wösten 
et al. (1998) divided the PTF into two groups: Class 
PTF attributing the values of Ks according to their 
relevance to a particular soil texture class and, Con-
tinuous PTF where linear, reciprocal and exponen-
tial relationships of the predictors were used in the 
regression analysis. Tomasella et al. (2003) divided 
the empirical PTF into two other groups: Point PTF 
and Parametric PTF. Minasny et al. (1999) presented 
parametric and point estimates based on multiple 
linear regression, extended non-linear regression 

and artificial neural networks (NNs). NN analysis 
is implemented in a user-friendly program Rosetta, 
where Schaap et al. (2001) used a hierarchical ap-
proach to estimate Ks for different levels of the avail-
able predictors. Kröse and van der Smagt (1996) 
described NN as a highly interconnected network 
created by simple processing units (neurons) which 
communicate by sending signals to each other over 
the weighted connections. Each unit receives input 
from external sources, computes an output signal 
from it and propagates it to the other units. Three 
types of units (layers) are usually distinguished: input 
units which receive data from outside the neural 
network, output units which send the data out of the 
neural network and hidden units which are between 
the input and output units (their input and output 
signals remain within the neural network).

The recent technical progress in high-performance 
computing together with a collection of soil hydraulic 
data into large databases has enabled the development 
of data-driven methods such as machine learning 
technique (ML). PTF for Ks prediction using four 
types of ML-algorithms were published by Araya 
and Ghezzehei (2019); models using the K-Nearest 
Neighbours, Support Vector Regression, Random 
Forest (RF) and Boosted Regression Trees (BRTs) for 
different levels of predictors are available within their 
PTF App. The RF method averages the decisions of the 
large number of individually grown decision trees 
by searching for a predictor that provides the best 
split, resulting in the smallest model error. Gunarathna 
et al. (2019) reported this method as relatively robust 
to errors and outliers. BRT combines two algorithms: 
Regression Trees relating the response to their pre-
dictors by recursive binary splits and an adaptive 
method for combining many simple models for the 
improvement of the predictive performance called 
boosting (Elith et al. 2008). Thanks to their operat-
ing principle, BRT-based PTF are attractive in works 
with different origins of the training data, such as Ks 
measurement in-situ/laboratory by different methods 
(Araya & Ghezzehei 2019). The BRT and RF methods 
incorporated within the PTF App are based on more 
than 18 000 datasets of United States (US) soils and 
offer predictions based on up to 20 predictors. Such 
a large background database might imply the possibility 
of use for the Ks estimation of soils outside the US.

This study aims to find out whether the Ks of an ag-
ricultural field with relatively high spatial and temporal 
variability in Ks can be estimated with acceptable ac-
curacy by means of PTF based on different approaches; 

https://www.agriculturejournals.cz/web/swr/


27

Soil and Water Research, 18, 2023 (1): 25–32 Original Paper

https://doi.org/10.17221/130/2022-SWR

NN analysis in Rosetta by Schaap et al. (2001), ML-
algorithms in the PTF App by Araya and Ghezzehei 
(2019) and the continuous PTF by Wösten et al. (1998).

MATERIAL AND METHODS

Source data. This study utilised information about 
the particle size distribution (% clay, silt and sand), dry 
bulk density (BD) and organic matter (OM)/organic 
carbon (Cox) paired with 56 Ks measurements. The 
Ks measurements were carried out in situ by a Pres-
sure ring infiltrometer (Matula & Kozáková 1997) 
in 2008–2009 and also by a KSAT device (METER 
Group, Inc.) in the laboratory on 250 cm3 soil core 
samples in 2021. All the data originate from one 
agricultural field managed by different tillage opera-
tions since 1995 within the experimental research 
at the Crop Research Institute in Prague (altitude 
345 m a.s.l., 50°5'17.264''N, 14°17'50.024''E, with 
a mean annual precipitation of 473 mm and a mean 
annual temperature of 7.9 °C). The following tillage 
treatments were repeatedly applied within the experi-
mental field: conventional tillage with mouldboard 
ploughing up to 22 cm, reduced tillage with a non-

inversion treatment of the top 10 cm by a chisel 
plough and no-tillage (direct drill). The following crop 
rotation is being used: pea (Pisum sativum) – winter 
wheat (Triticum aestivum) – oil seed rape (Brassica 
napus subsp. napus) – winter wheat (Triticum aes-
tivum). The Ks data originate from measurements 
in all three types of crops in different phases of the 
vegetation season. The soil texture (Soil Survey Staff 
2014) of the experimental field is silty clay loam (38 
samples) and silt loam (18 samples) and the soil was 
classified as Haplic Luvisol (IUSS Working Group 
2015), formerly referred to as Orthic Luvisol (FAO-
UNESCO 1974). The basic soil properties (Table 1) 
were determined by standard methods; particle size 
distribution analysis by the Hydrometer Method, 
particle density by the Pycnometer Bottle Method, 
the dry bulk density (gravimetric method on 100 and/
or 250 cm3 undisturbed soil samples), the organic 
carbon content Cox by the Walkley–Black oxidomet-
ric method (organic matter content was obtained 
by multiplication by a factor of 1.724).

Tested PTFs. Ten PTF models with different levels 
of predictors were evaluated in this study (Table 2). 
Two ML-algorithms with three levels of predictors 

Table 1. Basic soil characteristics of the experimental site in Praha-Ruzyně

OM Cox Dry bulk  
density (g/cm3)

Clay Silt Sand Particle  
density (g/cm3)

Ks 
(cm/day)(%) (%)

Min 1.241 0.720 1.13 22.0 54.2 8.0 2.60 10.2
Max 3.362 1.950 1.62 33.5 65.5 19.0 2.64 1 261.2
Average 2.339 1.357 1.35 30.2 57.2 12.6 2.62 336.8
SD 0.476 0.276 0.12 3.3 3.3 2.7 0.02 271.4

OM – organic matter content; Cox – organic carbon content; SD – standard deviation; Ks – saturated hydraulic conductivity

Table 2. List of the applied pedotransfer functions (PTF) and corresponding predictors

PTF model Method Predictors Reference
BRT 3-0 boosted regression trees % sand, % silt, % clay Araya and Ghezzehei (2019)
BRT 3-1 boosted regression trees % sand, % silt, % clay, BD (g/cm3) Araya and Ghezzehei (2019)
BRT 3-2 boosted regression trees % sand, % silt, % clay, BD (g/cm3), Cox (%) Araya and Ghezzehei (2019)
RF 3-0 random forest % sand, % silt, % clay Araya and Ghezzehei (2019)
RF 3-1 random forest % sand, % silt, % clay, BD (g/cm3) Araya and Ghezzehei (2019)
RF 3-2 random forest % sand, % silt, % clay, BD (g/cm3), Cox (%) Araya and Ghezzehei (2019)
Rosetta-SSC neural network % sand, % silt, % clay Schaap et al. (2001)
Rosetta-SSC+BD neural network % sand, % silt, % clay, BD (g/cm3) Schaap et al. (2001)
Wösten-original p. non-linear regression analysis % silt, % clay, OM (%), BD (g/cm3), topsoil Wösten et al. (1998)
Wösten-own p. non-linear regression analysis % silt, % clay, OM (%), BD (g/cm3), topsoil Wösten et al. (1998)

BD – dry bulk density; Cox – organic carbon content; OM – organic matter content; topsoil is a qualitative variable with a value 
of 1 for topsoil and 0 for subsoil
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from the ML-based PTF of Araya and Ghezzehei 
(2019) were selected for testing in this study: Random 
Forest (RF) and Boosted Regression Trees (BRTs). 
The NN analysis incorporated into the public domain 
Windows-based modelling program Rosetta (Schaap 
et al. 2001) offers a total of five hierarchical models 
of PTF, two of which were tested in this study. The 
continuous PTF of Wösten et al. (1998) was applied 
in its original form of Equation (1) and also with newly 
derived regression parameters (Equation (2)) specific 
for the silty clay loam texture class based on the soil 
water retention data contained in the database of soil 
hydrophysical properties in the Czech Republic (HY-
PRESCZ database) (Miháliková et al. 2013).

Ks*= 7.755 + 0.0352 × S + 0.93 × topsoil – 0.967 × 
      × D2 – 0.000484 × C2 – 0.000322 × S2 + 0.001 × 
      × S–1 – 0.0748 × OM–1 – 0.643 × ln(S) – 0.01398 × 
      × D × C – 0.1673 × D × OM + 0.02986 × topsoil × 
      × C – 0.03305 × topsoil × S 	  (1)

Ks*= 3149.75 + 26.33 × S +1.447 × D2 + 0.0023 × 
      × C2 –0.1056 × S2 –12119.6 × S–1 – 0.0033 × 
      × OM–1 – 1011.6 × ln(S) – 0.112 × D × C + 
      + 0.0911 × D × OM 	  (2)

where:
Ks* – transformed parameter Ks, Ks* = ln(Ks);
ln – a natural logarithm;
C – content of the clay particles (%);
D – dry bulk density (g/cm3);
S – content of the silt particles (%);
OM – organic matter content (%).

Topsoil is a qualitative variable with a value of 1 for 
topsoil and 0 for subsoil.

Statistical evaluation. The quality of the Ks es-
timates was evaluated by the mean error (ME), the 
root mean square error (RMSE), the correlation 
coefficient (r), and the coefficient of determination 
(R2), as follows:  

 	  (3)

 	  (4)

 	 (5)

where:
xi – measured Ks data;
yi – predicted Ks data;
n – the number of xi yi data pairs.

For the possibility of comparison to other published 
studies, the Ks values were determined in cm/day. 
Since the Ks is not normally distributed, the statistical 
evaluation was performed on the log-transformed 
Ks data.

RESULTS AND DISCUSSION

In total, 56 Ks values were predicted by ten PTF 
models for a single agricultural field where different 
tillage practices have been applied repeatedly since 
1995. The particle size distribution data, the essential 
predictors of each PTF, did not significantly differ 
in space and time. The maximum differences in % 
content of the clay, silt and sand particles reached 
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Figure 1. Frequency histograms of  the measured saturated hydraulic conductivity (Ks) data; in-situ measurements 
utilising a Pressure infiltrometer by Matula and Kozáková (1997) on the left and laboratory measurements on 250 cm3 
undisturbed soil samples by a KSAT device (METER Group Inc.) on the right
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11%, but the measured Ks value ranged from 10.2 cm/
day to 1261.2 cm/day (Table 1). Such variability 
in Ks is common for agricultural fields, where till-
age operations temporarily affect the soil structure 
(Šteakauerová & Mikulec 2009; Schwen et al. 2011). 
Smaller Ks values were measured on the undisturbed 
soil samples by the KSAT device in the laboratory 
compared to the Ks values measured in the field 
(Figure 1). This might be due to the disturbance 
of the continuity of the porous system during the 
sampling and/or transportation process. Since there 
is no reference method for Ks determination, the 
possible effect of the determination method has not 
been evaluated and all the measured data were used 
for a quality evaluation of the Ks estimates. The re-
sulting statistics ME, r, R2 and RMSE are presented 
in Table 3, where the individual PTF models are 
ranked (1–10) according to their performance. The 

best ranking (1) was attributed to the PTF with the 
smallest RMSE value. The distribution of the mea-
sured and estimated Ks values in terms of quartiles 
is depicted in Figure 2; a very wide range of estimated 
Ks values was obtained from BRT 3-0. The individual 
estimates were checked and it was found that only 
a 2% difference in the clay or silt content resulted 
in estimates being two orders of magnitude different. 
An increase in the clay content from 30.6% to 32.6% 
with an unchanging silt content of 55.5% and a cor-
responding 2% decrease in the sand content from 
13.9% to 11.9% caused a decrease in the estimated 
Ks value from 1573.8 to 10.5 cm/day. Similar to that, 
an increase in the silt content by 2% (from 55.5% 
to 57.5%, with an unchanged clay content of 30.6% 
and a corresponding 2% decrease in the sand content 
from 13.9% to 11.9%) also caused a significant drop 
in the estimated Ks value (from 1573.8 to 13.9 cm 

Table 3. Statistical evaluation and final ranking of the tested pedotransfer functions (PTF) on the basis of the root mean 
square error (RMSE)

PTF model r R2 (%) ME RMSE Ranking*
Wösten-own p. –0.038 0.147 –0.101 0.521 1
Rosetta SSC+BD –0.076 0.584 –1.014 1.235 2
RF 3-0 0.008 0.006 –1.054 1.238 3
Wösten-original p. 0.253 6.393 –1.205 1.273 4
BRT 3-2 –0.094 0.881 –1.183 1.314 5
Rosetta SSC 0.232 5.390 –1.282 1.348 6
BRT 3-0 –0.138 1.912 –0.700 1.385 7
RF 3-2 0.101 1.020 –1.390 1.456 8
BRT 3-1 –0.071 0.508 –1.395 1.537 9
RF 3-1 0.095 0.907 –1.616 1.682 10

r – correlation coefficient; R2 – coefficient of determination; ME – mean error; *the best ranking (1) is attributed to the PTF 
with the smallest RMSE value

Figure 2. Box-plots of  the measured and 
estimated saturated hydraulic conductivity 
(Ks) values
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per day). These unreasonably high Ks estimates 
which appeared in 12 cases affected the BRT 3-0 
performance, as documented by  the correlation 
graphs displayed in Figure 3. Other BRT models 
with a higher number of predictors using not only 
the particle size distribution data, but also the BD 
(BRT 3-1) or BD and Cox (BRT 3-2) did not show 
such an effect. Despite the above discussed cases 
of overestimations, from a general point of view, all 
the tested PTF models underestimated the measured 
data. The extent of the underestimation can be ob-
served in Figure 4, where the resulting negative ME 
values are graphically displayed. Temporary enhanced 
infiltration caused by tillage operations (e.g., Moret 
& Arrúe 2007; Kreiselmeier et al. 2020) and/or higher 
pore connectivity and the macroporous preferential 
flow reported for no-tillage (reported by, e.g., Galdos 
et al. 2019) were not sufficiently reflected by the PTF. 

The correlation between the measured and pre-
dicted Ks data is indicated by the r and R2 coefficients; 

the higher the coefficients, the better the correlation. 
As can be seen from Table 3 and Figure 3, the cor-
relation between the measured and estimated data 
is low. However, for some estimates, the low values 
of the r or R2 coefficients do not necessarily mean 
a low estimation quality. Instead, the average devia-
tion of the predicted Ks value from the measured 
Ks expressed as RMSE is considered as the most 
suitable characteristic for the evaluation of the Ks 
estimation quality. The lowest RMSE value of 0.521 
was determined for the continuous PTF in a form 
by Wösten et al. (1998), for which the own regres-
sion parameters were derived based on the Czech 
database of soil hydraulic properties HYPRES CZ 
(Miháliková et al. 2013). This is the only PTF model 
which provided estimates of Ks for a given agricultural 
soil with acceptable accuracy comparable to other 
published studies (RMSE < 1). This is agreement 
with findings of Nemes et al. (2003) highlighting 
the need for national scale datasets to be utilised 

Figure 3.  Correlations between the measured and 
predicted saturated hydraulic conductivity (Ks) data 
for the individual models of the applied pedotransfer 
functions (PTFs)
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within the estimation procedures by PTF. Lilly et al. 
(2008) reported averaged RMSE values of 0.97 for 
PTF using Regression Trees and Tóth et al. (2015) 
reported RMSE for estimates on a European scale 
in a range from 0.9 to 1.36. Araya and Ghezzehei 
(2019) presented RMSE values between 0.34 and 0.44 
for the BRT models and from 0.37 to 0.44 for models 
employing RF. Although a very robust soil database 
of more than 18 000 datasets is behind their PTF 
App, the individual texture classes are not uniformly 
represented; soils with coarse texture predominate 
within the database. The possible improvement in the 
estimation quality by means of incorporation of the 
local soil data into the ML-based PTF by Araya and 
Ghezzehei (2019) is planned for future studies. Es-
timations with other parameters reflecting changes 
in the soil properties caused by agrotechnical op-
erations, such as aggregate stability is also planned 
to be explored. 

CONCLUSION

Despite the large databases behind the PTF in Ro-
setta (Schaap et al. 2001) and the PTF App (Araya & 
Ghezzehei 2019), these PTF did not provide satisfac-
tory estimates for the agricultural soil being inves-
tigated (Haplic Luvisol, in the Czech Republic). The 
soil reflects changes in the structure due to tillage 
operations and, thus, has a great temporal variabil-
ity, which is difficult to describe by predictors. The 
importance of local, national-based databases of soil 
hydraulic properties has been confirmed as they can 
provide background data which can lead to higher 
quality estimates of Ks. Although the use of estimated 
saturated hydraulic conductivity values is becoming 
more common, the importance of direct determina-
tion methods should not be downplayed. 

Acknowledgement: We would like to thank to Dr. P. Růžek, 
Dr. R. Vavera and their co-workers from the Crop Research 
Institute for their cooperation and experimental field man-
agement.

REFERENCES 

Araya S.N., Ghezzehei T.A. (2019): Using machine learn-
ing for prediction of saturated hydraulic conductivity 
and its sensitivity to soil structural perturbations. Water 
Resources Research, 55: 5715–5737.

Bouma J. (1989): Using soil survey data for quantitative 
land evaluation. Advances in Soil Sciences, 9: 177–213.

Bouma J., van Lanen J.A.J. (1987): Transfer functions 
and threshold values: From soil characteristics to land 
qualities. In: Beek K.J., Burrough P.A., Mc Cormack 
D.E. (eds.): Quantified Land Evaluation. Proc. Work-
shop ISSS and SSSA, Washington, DC., Apr 27–May 2, 
1986: 106–110.

Elith J., Leathwick J.R., Hastie T. (2008): A working guide 
to boosted regression trees. Journal of Animal Ecology, 
77: 802–813.

Fait G., Balderacchi M., Ferrari F., Ungaro F., Capri E., 
Trevisan M. (2010): A field study of the impact of differ-
ent irrigation practices on herbicide leaching. European 
Journal of Agronomy, 32: 280–287.

FAO-UNESCO (1974): Key to Soil Units for the New Soil 
Map of the World. Legend 1. Rome, FAO.

Galdos M.V., Pires L.F., Cooper H.V., Calonego J.C., Ro-
solem C.A., Mooney S.J. (2019): Assessing the long-term 
effects of zero-tillage on the macroporosity of Brazilian 
soils using X-ray Computed Tomography. Geoderma, 
337: 1126–1135.

Gunarathna M.H.J.P., Sakai K., Nakandakari T., Momii K., 
Kumari M.K.N. (2019): Machine learning approaches 
to develop pedotransfer functions for tropical Sri Lankan 
soils. Water, 11: 1940.

Figure 4. Estimation quality of the tested 
models of  the pedotransfer functions 
(PTFs) by means of the mean error (ME)
The ME values are based on the log-trans-
formed saturated hydraulic conductivity (Ks) 
values in cm/day

Wösten – own p.

Wösten – original p. 

Rosetta SSC + BD 

Rosetta SSC 

RF 3-2

RF 3-1

RF 3-0

BRT 3-2

BRT 3-1

BRT 3-0

Mean error
–2               –1.5              –1               –0.5               0                 0.5

https://www.agriculturejournals.cz/web/swr/


32

Original Paper Soil and Water Research, 18, 2023 (1): 25–32

https://doi.org/10.17221/130/2022-SWR

IUSS Working Group WRB (2015): World Reference Base 
for Soil Resources 2014, Update 2015. International Soil 
Classification System for Naming Soils and Creating 
Legends for Soil Maps. World Soil Resources Reports 
No. 106. Rome, FAO.

Kreiselmeier J., Chandrasekhar P., Weninger T., Schwen A., 
Julich S., Feger K.-H., Schwärzel K. (2020): Temporal 
variations of the hydraulic conductivity characteristic 
under conventional and conservation tillage. Geoderma, 
362: 114127.

Kröse B., van der Smagt P. (1996): An introduction to Neural 
Networks. 8th Ed. Amsterdam, University of Amsterdam.

Lilly A., Nemes A., Rawls W.J., Pachepsky Y.A. (2008): 
Probabilistic approach to the identification of input vari-
ables to estimate hydraulic conductivity. Soil Science 
Society of America Journal, 72: 16–24.

Matula S., Kozáková H. (1997): A simple pressure infiltrom-
eter for determination of soil hydraulic properties by in 
situ infiltration measurements. Rostlinná výroba/Plant 
Production, 43: 405–413.

Miháliková M., Matula S., Doležal F. (2013): HYPRESCZ – 
Database of soil hydrophysical properties in the Czech 
Republic. Soil and Water Research, 8: 34–41.

Minasny B., Mc Bratney A.B., Bristow K.Y. (1999): Com-
parison of different approaches to  the development 
of pedotransfer functions for water retention curves. 
Geoderma, 93: 225–253.

Moret D., Arrúe J.L. (2007): Characterizing soil water-
conducting macro and mesoporosity as influenced by till-
age using tension infiltrometry. Soil Science Society 
of America Journal, 71: 500–506.

Nemes A., Schaap M.G., Wösten J.H.M. (2003): Function-
al evaluation of pedotransfer functions derived from 
different scales of data collection. Soil Science Society 
of America Journal, 67: 1093–1102.

Parr J.R., Bertrand A.R. (1960): Water infiltration into soils. 
Advances in Agronomy, 12: 311–363.

Schaap M.G., Leij F.J., van Genuchten M.T. (2001): Rosetta: 
A computer program for estimating soil hydraulic param-
eters with hierarchical pedotransfer functions. Journal 
of Hydrology, 251: 163–176.

Schwärzel K., Punzel J. (2007): Hood infiltrometer – 
A new type of tension infiltrometer. Soil Science Society 
of America Journal, 71: 1438–1447.

Schwen A., Hernandez-Ramirez G., Lawrence-Smith E.J., 
Sinton S.M., Carrick S., Clothier B.E., Buchan G.D., Lo-
iskandl W. (2011): Hydraulic properties and the water-
conducting porosity as affected by subsurface compaction 
using tension infiltrometers. Soil Science Society of 
America Journal, 75: 822–831.

Soil Survey Staff (2014): Keys to Soil Taxonomy. 12th Ed. 
Washington, DC, USDA-Natural Resources Conserva-
tion Service.

Štekauerová V., Mikulec V. (2009): Variability of saturated 
hydraulic conductivities in the agriculturally cultivated 
soils. Soil and Water Research, 4: S14–S21.

Tomasella J., Pachepsky Ya., Crestana S., Rawls W.J. (2003): 
Comparison of two techniques to develop pedotrans-
fer functions for water retention. Soil Science Society 
of America Journal, 67: 1085–1092.

Tóth B., Weynants M., Nemes A., Makó A., Bilas G., Tóth G. 
(2015): New generation of hydraulic pedotransfer functions 
for Europe. European Journal of Soil Science, 66: 226–238.

Tuffour H., Abubakari A., Agbeshie A., Khalid A., Tetteh E., 
Keshavarzi A., Bonsu M., Quansah C., Oppong J., Dan-
so L. (2019): Pedotransfer functions for estimating satu-
rated hydraulic conductivity of selected benchmark soils 
in Ghana. Asian Soil Research Journal, 2: 1–11.

Willkommen S., Lange J., Ulrich U., Pfannerstill M., 
Fohrer N. (2021): Field insights into leaching and trans-
formation of pesticides and fluorescent tracers in agricul-
tural soil. Science of the Total Environment, 751: 141658.

Wösten J.H.M., Lilly A., Nemes A., Le Bas C. (1998): Using 
existing soil data to derive hydraulic parameters for simu-
lation models in environmental studies and in land use 
planning. Final Report on the European Union Funded 
Project, Report 156, Wageningen.

Zhang Y., Schaap M.G. (2019): Estimation of saturated 
hydraulic conductivity with pedotransfer functions: A re-
view. Journal of Hydrology, 575: 1011–1030.

Received: September 18, 2022
Accepted: November 23, 2022

Published online: January 16, 2023

https://www.agriculturejournals.cz/web/swr/

