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Abstract: The determination of the saturated hydraulic conductivity Ks on a field scale presents a challenge in which
several variables have to be considered. As there is no benchmark or reference method for the Ks determination, the
suitability of each available method has to be evaluated. This study is aimed at the functional evaluation of three publicly
available types of pedotransfer functions (PTFs) with different levels of utilised predictors. In total, ten PTF models were
applied to the 56 data sets including the measured Ks value and the required predictors (% sand, silt and clay particles,
dry bulk density, and organic matter/organic carbon content). A single agricultural field with a relatively homogenous
particle size distribution was selected for the study to evaluate the ability of the PTF to reflect the variability of Ks.
The correlation coefficient, coefficient of determination, mean error, and root mean square error were determined
to evaluate the Ks prediction quality. The results showed a high variability in Ks within the field; the measured Ks va-
lues ranged between 10 and 1261 cm/day. Although the tested PTF models are based on a robust background of soil
databases, they could not provide estimates with satisfactory accuracy unless local soil data were incorporated into the
PTF development.
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Agricultural soils are subjected to the cultivation
and fertilisation of the soil surface layer which re-
sults in changes to the soil hydrophysical properties.
Plant growth and root development together with
the activity of soil fauna result in a relatively high
variation in the hydraulic properties of agricultural
soils. In addition to that, the drying of the soil and
the creation of cracks contribute to the formation
of preferential pathways, allowing faster water infil-
tration and reaching deeper soil layers (Stekauerova
& Mikulec 2009). Undesirable significant herbicide

or pesticide contents can be leached from the surface
to the deeper layers and/or to the groundwater (Fait
et al. 2010; Willkommen et al. 2021). One of the most
important hydraulic properties of each soil is the
saturated hydraulic conductivity Ks. It is a widely
used characteristic in soil water and solute trans-
port models incorporated in a number of different
environmental, hydrological and water management
applications (Schaap et al. 2001; Araya & Ghezzehei
2019; Tuffour et al. 2019). Under most field conditions,
soils are not only heterogeneous, but also anisotropic.
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The heterogeneity of the soil can be defined by the
spatial variability of its properties, e.g., Ks. Anisot-
ropy, on the other hand, leads to different property
exhibitions in different directions; measured Ks values
in the vertical direction may be higher or lower than
those measured in the horizontal direction. There are
several methods for the Ks measurement; in the field
and in the laboratory by using different types of infil-
trometers. Ks in-situ can be determined by, e.g., the
Double-ring infiltrometer (Parr & Bertrand 1960),
Hood infiltrometer (Schwirzel & Punzel 2007), Guelph
infiltrometer (Soilmoisture Equipment Corp., USA),
and SATURO (METER Group Inc., USA). Ks in the
laboratory can be determined by a constant or falling
head apparatus such as a Ksar device (METER Group
Inc.). Unfortunately, there is no standard procedure for
the Ks determination, to which the others can be related
to or compared with. Direct measurement can involve
an unreasonably high number of replications to account
for the spatial variability of Ks, especially when large
and/or heterogeneous areas are being characterised.
That is why indirect Ks estimation methods of have been
developed. Bouma and van Lanen (1987) introduced
the term “transfer functions” and later Bouma (1989)
introduced the term “pedotransfer functions (PTFs)”
for these estimation methods. Minasny et al. (1999)
described PTF as a translation of data “we have” into
data “we need”. Ks estimations are based on routinely
measured and easily available soil properties called
predictors, such as the particle size distribution data,
dry bulk density, and organic matter/organic carbon
content. Over the last 30 years, numerous PTFs have
been proposed and their estimation quality has been
evaluated and compared mainly for the prediction
of soil water retention parameters; however, a review
by Zhang and Shaap (2019) provided an insight into
the history of Ks predictions, and discussed the re-
quired predictors and statistical techniques for the
PTF development.

There are many types and forms of PTF; PTF can
be grouped according to some basic criteria. Wosten
et al. (1998) divided the PTF into two groups: Class
PTF attributing the values of Ks according to their
relevance to a particular soil texture class and, Con-
tinuous PTF where linear, reciprocal and exponen-
tial relationships of the predictors were used in the
regression analysis. Tomasella et al. (2003) divided
the empirical PTF into two other groups: Point PTF
and Parametric PTF. Minasny et al. (1999) presented
parametric and point estimates based on multiple
linear regression, extended non-linear regression
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and artificial neural networks (NNs). NN analysis
is implemented in a user-friendly program Rosetta,
where Schaap et al. (2001) used a hierarchical ap-
proach to estimate Ks for different levels of the avail-
able predictors. Krose and van der Smagt (1996)
described NN as a highly interconnected network
created by simple processing units (neurons) which
communicate by sending signals to each other over
the weighted connections. Each unit receives input
from external sources, computes an output signal
from it and propagates it to the other units. Three
types of units (layers) are usually distinguished: input
units which receive data from outside the neural
network, output units which send the data out of the
neural network and hidden units which are between
the input and output units (their input and output
signals remain within the neural network).

The recent technical progress in high-performance
computing together with a collection of soil hydraulic
data into large databases has enabled the development
of data-driven methods such as machine learning
technique (ML). PTF for Ks prediction using four
types of ML-algorithms were published by Araya
and Ghezzehei (2019); models using the K-Nearest
Neighbours, Support Vector Regression, Random
Forest (RF) and Boosted Regression Trees (BRTs) for
different levels of predictors are available within their
PTF App. The RF method averages the decisions of the
large number of individually grown decision trees
by searching for a predictor that provides the best
split, resulting in the smallest model error. Gunarathna
etal. (2019) reported this method as relatively robust
to errors and outliers. BRT combines two algorithms:
Regression Trees relating the response to their pre-
dictors by recursive binary splits and an adaptive
method for combining many simple models for the
improvement of the predictive performance called
boosting (Elith et al. 2008). Thanks to their operat-
ing principle, BRT-based PTF are attractive in works
with different origins of the training data, such as Ks
measurement in-situ/laboratory by different methods
(Araya & Ghezzehei 2019). The BRT and RF methods
incorporated within the PTF App are based on more
than 18 000 datasets of United States (US) soils and
offer predictions based on up to 20 predictors. Such
alarge background database might imply the possibility
of use for the Ks estimation of soils outside the US.

This study aims to find out whether the Ks of an ag-
ricultural field with relatively high spatial and temporal
variability in Ks can be estimated with acceptable ac-
curacy by means of PTF based on different approaches;
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Table 1. Basic soil characteristics of the experimental site in Praha-Ruzyné

oM Cox Dry bulk Clay Silt Sand Particle Ks

(%) density (g/cm?) (%) density (g/cm®)  (cm/day)

Min 1.241 0.720 1.13 22.0 54.2 8.0 2.60 10.2
Max 3.362 1.950 1.62 33.5 65.5 19.0 2.64 1261.2
Average 2.339 1.357 1.35 30.2 57.2 12.6 2.62 336.8
SD 0.476 0.276 0.12 3.3 3.3 2.7 0.02 271.4

OM - organic matter content; Cox — organic carbon content; SD — standard deviation; Ks — saturated hydraulic conductivity

NN analysis in Rosetta by Schaap et al. (2001), ML-
algorithms in the PTF App by Araya and Ghezzehei
(2019) and the continuous PTF by Wosten et al. (1998).

MATERIAL AND METHODS

Source data. This study utilised information about
the particle size distribution (% clay, silt and sand), dry
bulk density (BD) and organic matter (OM)/organic
carbon (C,x) paired with 56 Ks measurements. The
Ks measurements were carried out in situ by a Pres-
sure ring infiltrometer (Matula & Kozdkova 1997)
in 2008-2009 and also by a Ksar device (METER
Group, Inc.) in the laboratory on 250 c¢m? soil core
samples in 2021. All the data originate from one
agricultural field managed by different tillage opera-
tions since 1995 within the experimental research
at the Crop Research Institute in Prague (altitude
345 m a.s.l,, 50°5'17.264"'N, 14°17'50.024"E, with
a mean annual precipitation of 473 mm and a mean
annual temperature of 7.9 °C). The following tillage
treatments were repeatedly applied within the experi-
mental field: conventional tillage with mouldboard
ploughing up to 22 cm, reduced tillage with a non-

inversion treatment of the top 10 cm by a chisel
plough and no-tillage (direct drill). The following crop
rotation is being used: pea (Pisum sativum) — winter
wheat (Triticum aestivum) — oil seed rape (Brassica
napus subsp. napus) — winter wheat (Triticum aes-
tivum). The Ks data originate from measurements
in all three types of crops in different phases of the
vegetation season. The soil texture (Soil Survey Staff
2014) of the experimental field is silty clay loam (38
samples) and silt loam (18 samples) and the soil was
classified as Haplic Luvisol (IUSS Working Group
2015), formerly referred to as Orthic Luvisol (FAO-
UNESCO 1974). The basic soil properties (Table 1)
were determined by standard methods; particle size
distribution analysis by the Hydrometer Method,
particle density by the Pycnometer Bottle Method,
the dry bulk density (gravimetric method on 100 and/
or 250 cm?® undisturbed soil samples), the organic
carbon content Cox by the Walkley—Black oxidomet-
ric method (organic matter content was obtained
by multiplication by a factor of 1.724).

Tested PTFs. Ten PTF models with different levels
of predictors were evaluated in this study (Table 2).
Two ML-algorithms with three levels of predictors

Table 2. List of the applied pedotransfer functions (PTF) and corresponding predictors

PTF model Method Predictors Reference

BRT 3-0 boosted regression trees % sand, % silt, % clay Araya and Ghezzehei (2019)
BRT 3-1 boosted regression trees % sand, % silt, % clay, BD (g/cm?) Araya and Ghezzehei (2019)
BRT 3-2 boosted regression trees % sand, % silt, % clay, BD (g/cm?®), Cox (%) Araya and Ghezzehei (2019)
RF 3-0 random forest % sand, % silt, % clay Araya and Ghezzehei (2019)
RF 3-1 random forest % sand, % silt, % clay, BD (g/cm?®) Araya and Ghezzehei (2019)
RF 3-2 random forest % sand, % silt, % clay, BD (g/cm?®), Cox (%) Araya and Ghezzehei (2019)

Rosetta-SSC neural network
Rosetta-SSC+BD

Wosten-original p. non-linear regression analysis

neural network

Wosten-own p. non-linear regression analysis

% sand, % silt, % clay
% sand, % silt, % clay, BD (g/cm?)
% silt, % clay, OM (%), BD (g/cm?®), topsoil
% silt, % clay, OM (%), BD (g/cm?3), topsoil

Schaap et al. (2001
Schaap et al. (2001
Wosten et al. (1998
Wosten et al. (1998

— —

=z

BD — dry bulk density; Cox — organic carbon content; OM — organic matter content; topsoil is a qualitative variable with a value

of 1 for topsoil and 0 for subsoil
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from the ML-based PTF of Araya and Ghezzehei
(2019) were selected for testing in this study: Random
Forest (RF) and Boosted Regression Trees (BRTs).
The NN analysis incorporated into the public domain
Windows-based modelling program Rosetta (Schaap
et al. 2001) offers a total of five hierarchical models
of PTF, two of which were tested in this study. The
continuous PTF of Wosten et al. (1998) was applied
in its original form of Equation (1) and also with newly
derived regression parameters (Equation (2)) specific
for the silty clay loam texture class based on the soil
water retention data contained in the database of soil
hydrophysical properties in the Czech Republic (HY-
PRESCZ database) (Mihalikova et al. 2013).

Ks*=7.755 + 0.0352 x S + 0.93 x topsoil — 0.967 x
x D? - 0.000484 x C* - 0.000322 x S? + 0.001 x
x S71 - 0.0748 x OM™! - 0.643 x In(S) — 0.01398 x
x D x C=0.1673 x D x OM + 0.02986 x topsoil x
x C —0.03305 x topsoil x S (1)

Ks*= 3149.75 + 26.33 x S +1.447 x D? + 0.0023 x
x C2-0.1056 x S* —12119.6 x S~' — 0.0033 x
x OM™ - 1011.6 x In(S) - 0.112 x D x C +
+0.0911 x D x OM (2)

where:
Ks* - transformed parameter Ks, Ks* = In(Ks);

In - anatural logarithm;

C - content of the clay particles (%);
D - dry bulk density (g/cm?);

S — content of the silt particles (%);

OM - organic matter content (%).

Topsoil is a qualitative variable with a value of 1 for
topsoil and 0 for subsoil.
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Statistical evaluation. The quality of the Ks es-
timates was evaluated by the mean error (ME), the
root mean square error (RMSE), the correlation
coefficient (r), and the coefficient of determination
(R?), as follows:

ME =%Zn:(yl.—xi) (3)
[y @
RMSE =, - ;(xi ;)

R = ”z;"fyf _z;xi Z;yi
Db [l |

where:

x; — measured Ks data;

y; — predicted Ks data;

n — the number of x; y; data pairs.

For the possibility of comparison to other published
studies, the Ks values were determined in cm/day.
Since the Ks is not normally distributed, the statistical
evaluation was performed on the log-transformed
Ks data.

RESULTS AND DISCUSSION

In total, 56 Ks values were predicted by ten PTF
models for a single agricultural field where different
tillage practices have been applied repeatedly since
1995. The particle size distribution data, the essential
predictors of each PTF, did not significantly differ
in space and time. The maximum differences in %
content of the clay, silt and sand particles reached

Ksat device

0-500 500-1 000 1 000-1 500

Measured Ks value (cm/day)

Figure 1. Frequency histograms of the measured saturated hydraulic conductivity (Ks) data; in-situ measurements

utilising a Pressure infiltrometer by Matula and Kozékova (1997) on the left and laboratory measurements on 250 cm®

undisturbed soil samples by a Ksat device (METER Group Inc.) on the right
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Table 3. Statistical evaluation and final ranking of the tested pedotransfer functions (PTF) on the basis of the root mean

square error (RMSE)

PTF model r R? (%) ME RMSE Ranking*
Wosten-own p. -0.038 0.147 -0.101 0.521 1
Rosetta SSC+BD -0.076 0.584 -1.014 1.235 2
RF 3-0 0.008 0.006 —-1.054 1.238 3
Wosten-original p. 0.253 6.393 -1.205 1.273 4
BRT 3-2 —-0.094 0.881 -1.183 1.314 5
Rosetta SSC 0.232 5.390 -1.282 1.348 6
BRT 3-0 -0.138 1.912 —-0.700 1.385 7
RF 3-2 0.101 1.020 -1.390 1.456 8
BRT 3-1 -0.071 0.508 -1.395 1.537 9
RF 3-1 0.095 0.907 -1.616 1.682 10

r — correlation coefficient; R?* — coefficient of determination; ME — mean error; *the best ranking (1) is attributed to the PTF

with the smallest RMSE value

11%, but the measured Ks value ranged from 10.2 cm/
day to 1261.2 cm/day (Table 1). Such variability
in Ks is common for agricultural fields, where till-
age operations temporarily affect the soil structure
(Steakauerova & Mikulec 2009; Schwen et al. 2011).
Smaller Ks values were measured on the undisturbed
soil samples by the Ksar device in the laboratory
compared to the Ks values measured in the field
(Figure 1). This might be due to the disturbance
of the continuity of the porous system during the
sampling and/or transportation process. Since there
is no reference method for Ks determination, the
possible effect of the determination method has not
been evaluated and all the measured data were used
for a quality evaluation of the Ks estimates. The re-
sulting statistics ME, r, R* and RMSE are presented
in Table 3, where the individual PTF models are
ranked (1-10) according to their performance. The

best ranking (1) was attributed to the PTF with the
smallest RMSE value. The distribution of the mea-
sured and estimated Ks values in terms of quartiles
is depicted in Figure 2; a very wide range of estimated
Ks values was obtained from BRT 3-0. The individual
estimates were checked and it was found that only
a 2% difference in the clay or silt content resulted
in estimates being two orders of magnitude different.
An increase in the clay content from 30.6% to 32.6%
with an unchanging silt content of 55.5% and a cor-
responding 2% decrease in the sand content from
13.9% to 11.9% caused a decrease in the estimated
Ks value from 1573.8 to 10.5 cm/day. Similar to that,
an increase in the silt content by 2% (from 55.5%
to 57.5%, with an unchanged clay content of 30.6%
and a corresponding 2% decrease in the sand content
from 13.9% to 11.9%) also caused a significant drop
in the estimated Ks value (from 1573.8 to 13.9 ¢cm

3.5
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3 o RF 3-0 o RF 3-1
0 Rosetta SSC o Rosetta SSC + BD
25 . 0 Wosten — original p. o Wosten — own p.
= .
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£ T @ RF 3-2
£ 15 " | ]
VI S . . x = MEASURED
1Y) =
0.5
o - « mean Figure 2. Box-plots of the measured and
o me;ﬁian estimated saturated hydraulic conductivity
outlier
-0.5 (Ks) values
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per day). These unreasonably high Ks estimates
which appeared in 12 cases affected the BRT 3-0
performance, as documented by the correlation
graphs displayed in Figure 3. Other BRT models
with a higher number of predictors using not only
the particle size distribution data, but also the BD
(BRT 3-1) or BD and C,y (BRT 3-2) did not show
such an effect. Despite the above discussed cases
of overestimations, from a general point of view, all
the tested PTF models underestimated the measured
data. The extent of the underestimation can be ob-
served in Figure 4, where the resulting negative ME
values are graphically displayed. Temporary enhanced
infiltration caused by tillage operations (e.g., Moret
& Arrte 2007; Kreiselmeier et al. 2020) and/or higher
pore connectivity and the macroporous preferential
flow reported for no-tillage (reported by, e.g., Galdos
etal. 2019) were not sufficiently reflected by the PTF.

The correlation between the measured and pre-
dicted Ks data is indicated by the r and R? coefficients;

30

functions (PTFs)

the higher the coefficients, the better the correlation.
As can be seen from Table 3 and Figure 3, the cor-
relation between the measured and estimated data
is low. However, for some estimates, the low values
of the r or R? coefficients do not necessarily mean
a low estimation quality. Instead, the average devia-
tion of the predicted Ks value from the measured
Ks expressed as RMSE is considered as the most
suitable characteristic for the evaluation of the Ks
estimation quality. The lowest RMSE value of 0.521
was determined for the continuous PTF in a form
by Wosten et al. (1998), for which the own regres-
sion parameters were derived based on the Czech
database of soil hydraulic properties HYPRES CZ
(Mihélikovd et al. 2013). This is the only PTF model
which provided estimates of Ks for a given agricultural
soil with acceptable accuracy comparable to other
published studies (RMSE < 1). This is agreement
with findings of Nemes et al. (2003) highlighting
the need for national scale datasets to be utilised
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within the estimation procedures by PTF. Lilly et al.
(2008) reported averaged RMSE values of 0.97 for
PTF using Regression Trees and T6th et al. (2015)
reported RMSE for estimates on a European scale
in a range from 0.9 to 1.36. Araya and Ghezzehei
(2019) presented RMSE values between 0.34 and 0.44
for the BRT models and from 0.37 to 0.44 for models
employing RF. Although a very robust soil database
of more than 18 000 datasets is behind their PTF
App, the individual texture classes are not uniformly
represented; soils with coarse texture predominate
within the database. The possible improvement in the
estimation quality by means of incorporation of the
local soil data into the ML-based PTF by Araya and
Ghezzehei (2019) is planned for future studies. Es-
timations with other parameters reflecting changes
in the soil properties caused by agrotechnical op-
erations, such as aggregate stability is also planned
to be explored.

CONCLUSION

Despite the large databases behind the PTF in Ro-
setta (Schaap et al. 2001) and the PTF App (Araya &
Ghezzehei 2019), these PTF did not provide satisfac-
tory estimates for the agricultural soil being inves-
tigated (Haplic Luvisol, in the Czech Republic). The
soil reflects changes in the structure due to tillage
operations and, thus, has a great temporal variabil-
ity, which is difficult to describe by predictors. The
importance of local, national-based databases of soil
hydraulic properties has been confirmed as they can
provide background data which can lead to higher
quality estimates of Ks. Although the use of estimated
saturated hydraulic conductivity values is becoming
more common, the importance of direct determina-
tion methods should not be downplayed.
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