Soil & Water Res., 2010, 5(1):1-9 | DOI: 10.17221/23/2009-SWR
Application of RothC model to predict soil organic carbon stock on agricultural soils of SlovakiaOriginal Paper
- 1 Regional Station Prešov
- 2 Regional Station Banská Bystrica
- 3 Department of Remote Sensing and Informatics
- 4 Department of Soil Science and Survey, Soil Science, and Conservation Research Institute Bratislava, Bratislava, Slovakia
Soil organic matter (SOM) takes part in many environmental functions and, depending on the conditions, it can be a source or a sink of the greenhouse gases. Presently, the changes in soil organic carbon (SOC) stock can arise because of the climatic changes or changes in the land use and land management. A promising method in the estimation of SOC changes is modelling, one of the most used models for the prediction of changes in soil organic carbon stock on agricultural land being the RothC model. Because of its simplicity and availability of the input data, RothC was used for testing the efficiency to predict the development of SOC stock during 35-year period on agricultural land of Slovakia. The received data show an increase of SOC stock during the first (20 years) phase and no significant changes in the course of the second part of modelling. The increase of SOC stock in the first phase can be explained by a high carbon input of plant residues and manure and a lower temperature in comparison with the second modelling part.
Keywords: agricultural land; RothC; Slovakia; soil organic carbon
Published: March 31, 2010 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Barančíková G. (2007): Validation of RothC model on selected key monitoring localities. Vedecké práce VUPOP, 29: 9-22. (in Slovak)
- Barančíková G., Halás J. (2008): Climate changes and its potential impact on soil organic carbon stock of selected Slovak agriculture farms. In: Blum W.H., Geryabek M.H. (eds): Eurosoil 2008. Book of Abstract, Vienna.
- Coleman K., Jenkinson D.S. (2005): ROTHC-26.3 A model for the turnover of carbon in soil. Model description and windows users guide. Available at h t t p : / / w w w. r o t h a m s t e d. b b s r c. a c. u k / a e n / c a r b o n / mod26_3_win.pdf
- Coleman K., Jenkinson D.S., Crocker G.J., Grace P.R., Klir J., Korschens M., Poulton P.R., Richter D.D. (1997): Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 81: 29-44.
Go to original source...
- Easter M., Paustian K., Killian K., Williams S., Freng T., Al-Adamat R., Batjes N.H., Bernoux M., Bhattacharyya T., Cerri C.C., Cerri C.E.P., Coleman K., Falloon P., Feller C., Gicheru P., Kamoni P., Milne E., Pal D.K., Powlson D.S., Rawajhif Z. (2007): The GEFSOC soil carbon modeling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land change on soil carbon. Agriculture, Ecosystems & Environment, 122: 13-25.
Go to original source...
- Falloon P., Smith P. (2002): Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management, 18: 101-111.
Go to original source...
- Falloon P., Smith P. (2003): Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use and Management 19: 265-269.
Go to original source...
- Falloon P., Smith P., Coleman K., Marshall S. (1998): Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 30: 1207-1211.
Go to original source...
- Falloon P., Smith P., Szabo J., Pasztor L. (2002): Comparison of approaches for estimating carbon sequestration at the regional scale. Soil Use and Management, 18: 164-174.
Go to original source...
- Guo L.B., Gifford R.M. (2002): Soil carbon stocks and land use change: a "meta analysis". Global Change Biology, 8: 345-360.
Go to original source...
- Guo L., Falloon P., Zhou B., Li Y., Lin E., Zhang F. (2007): Application of the RothC model to the results of long-term experiments on typical upland soils in northern China. Soil Use and Management, 23: 63-70.
Go to original source...
- Jones C., McConnell C., Coleman K., Cox P., Falllon P., Jenskinson D., Powlson D. (2005): Global climate changes and soil carbon stocks; predistions from two contrasting models for the turnover of organic carbon in soils. Global Change Biology, 11: 154-166.
Go to original source...
- Jurčová O., Bielek P. (1997): Sorces, losses and balance of soil organic matter. In: Gonet S.S., Zaujec A. (eds): Proc. Conf. Humic Substances in Environment 1. Polish Humic Substances Society, Bydgoszcz, 9-12.
- Kobza J., Barančíková G., Čumová L., Hrivňáková K., Makovníková J., Náčiniaková-Bezáková Z., Pálka B., Schlosserová J., Styk J., Širáň M., Tóthová G. (2009): Soil Monitoring of Slovak Republic. Present State and Development of Monitored Soils as the Base to their Protection and Next Land Use. VÚPOP, Bratislava.
- Linkeš V., Gromová A., Lupták D., Pestún V., Poliak P. (1988): System of Soil Information. Príroda, Bratislava. (in Slovak)
- Linkeš V., Makovníková J., Kobza J. (1989): Balanced bulk density of soil calculated from the date on its texture and humus. Rostlinná výroba, 35: 773-780.
- Loague K., Green E.E. (1991): Statistical and graphic methods for evaluating solute transport models: overwiev and application. Journal of Contaminant Hydrology, 7: 51-73.
Go to original source...
- Ludwig B., Schultz E., Rethemeyer J., Merbach I., Flessa H. (2007): Predictive modeling of C dynamics in the long-term fertilization experiment at Bad Lauchstadt with the Rothamsted carbon model. European Journal of Soil Science, 58: 1155-1163.
Go to original source...
- Meloun M., Militký J. (1994): Statistical Treatment of Experimental Data. Edice Plus, Praha.
- Parton W.J., McKeown B., Kirchner V., Ojima D.S. (1992): CENTURY Users Manual. Coloredo State University, NREL Publication, Fort Collins.
- Smith P. Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H.M., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A. E., Mueller T., Parton W.J., Thorney J.H.M., Whitmore A.P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81: 153-225.
Go to original source...
- Smith J., Smith P., Wattenbach M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M., Reginster I., Ewert F. (2005): Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 11: 2141-2152.
Go to original source...
Go to PubMed...
- Smith J., Smith P., Wattenbach M., Gottschalk P., Romanenkov V.A., Ševcova L.K., Sirotenko O.D., Rukhovič D.I., Koroleva P.V., Romanenko I.A., Lisovoj N.V. (2007): Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine 1990-2070. Global Change Biology, 13: 342-354.
Go to original source...
- Sobocká J., Balkovič J., Lapin M. (2007): A CENTURY 5 Model using for estimation of soil organic matter behaviour at predicted climate change. Soil and Water Research, 2: 25-34.
Go to original source...
- van Wesemael B., Lettens S., Roelandt C., Van Orshoven J. (2005): Modelling the evolution of regional carbon stocks in Belgian cropland soils. Canadian Journal of Soil Science, 85: 511-521.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.