Soil & Water Res., 2011, 6(1):30-42 | DOI: 10.17221/29/2010-SWR

Modelling soil organic carbon changes on arable land under climate change - a case study analysis of the Kočín farm in SlovakiaOriginal Paper

Juraj Balkovič1, 2, Erwin Schmid3, Rastislav Skalský2, Martina Nováková2
1 Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
2 Soil Science and Conservation Research Institute, Bratislava, Slovak republic
3 Institute for Sustainable Economic Development, University of Bodenkultur Wien, Vienna, Austria

We have estimated soil organic carbon and crop yield changes under distinct climate change scenarios for the Kočín farm in Slovakia. Two regional climate change scenarios, i.e. the A2 and B2 SRES emission scenarios, and a reference climate scenario have been included into the bio-physical process model EPIC to simulate the effects on the topsoil organic carbon stocks and crop yields for the period of 2010-2050. In addition, we have used the data from several fields of the Kočín farm including the soil data, crop rotational and management data as well as topographical data. The topsoil organic carbon stocks show a decreasing trend for the period of 2010-2050. Among all crop rotation systems and soil profiles, the losses over the period are 9.0%, 9.5%, and 10.7% for the reference, A2, and B2 climate scenarios, respectively. Increasing temperatures accelerate the decomposition of the soil organic carbon particularly when soils are intensively managed. The soil organic carbon changes are crop-rotation specific, which is partly due to the climate scenarios that affect the crop biomass production differently. This is shown by comparison of the crop yields. We conclude that EPIC is capable to reliably simulate effects of climate change on soil organic carbon and crop yields.

Keywords: arable land; climate change; Kočín farm; Slovakia; soil organic carbon

Published: March 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Balkovič J, Schmid E, Skalský R, Nováková M. Modelling soil organic carbon changes on arable land under climate change - a case study analysis of the Kočín farm in Slovakia. Soil & Water Res. 2011;6(1):30-42. doi: 10.17221/29/2010-SWR.
Download citation

References

  1. Brown R.A., Rosenberg N.J. (1999): Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions. Climatic Change, 41: 73-107. Go to original source...
  2. Cole V., Cerri C., Minami K., Mosier A., Rosenberg N.J., Sauerbeck D. (1996): Agricultural options for mitigation of greenhouse gas emissions. In: Watson R.T., Zinyowera M.C., Moss R.H. (eds): Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change - Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, 744-771.
  3. Easterling W.E., Rosenberg N.J., McKenney M.S., Jones C.A., Dyke P.T., Williams J.R. (1992): Preparing the erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effects of CO2. Agricultural and Forest Meteorology, 59: 17-34. Go to original source...
  4. Easterling W.E., Chen X.F., Hays C., Brandle J.R., Zhang H.H. (1996): Improving the validation of model-simulated crop yield response to climate change: an application to the EPIC model. Climate Research, 6: 263-273. Go to original source...
  5. FAO (2004): Carbon sequestration in dryland soils. World Soils Resources Reports 102, Food and Agriculture Organization of the United Nations, Rome. Go to original source...
  6. Huszár T., Mika J., Lóczy D., Molnár K., Kertész Á. (1999): Climate change and soil moisture: a case study. Physics and Chemistry of the Earth (A), 24: 905-912. Go to original source...
  7. Ilavská B. (2007): Using of the land evaluation unit information system for evaluation of potential water erosion. [Dissertation Thesis.] Faculty of Natural Sciences, Comenius University in Bratislava. (in Slovak)
  8. Izaurralde R.C., Williams J.R., McGill W.B., Rosenberg. N.J. (2001): Simulating soil carbon dynamics, erosion, and tillage with EPIC. In: Proc. 1st National Conference on Carbon Sequestration. Washington D.C., U.S. Department of Energy - National Energy Technology Laboratory, 1-12. Available at http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/5c2.pdf (accessed June 11,2010)
  9. Izaurralde R.C., Williams J.R., McGill W.B., Rosenberg N.J., Quiroga Jakas M.C. (2006): Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192: 362-384. Go to original source...
  10. Jones C.A., Dyke P.T., Williams J.R., Kiniry J.R., Benson V.W., Griggs R.H. (1991): EPIC: an operational model for evaluation of agricultural sustainability. Agricultural Systems, 37: 341-350. Go to original source...
  11. Kobza J., Barančíková G., Čumová L., Hrivňáková K., Makovníková J., Náčiniaková-Bezáková Z., Pálka B., Schlosserová J., Styk J., Širáň M., Tóthová G. (2009): Soil Monitoring of Slovak Republic. Present State and Development of Monitored Soils as the Base to their Protection and Next Land Use. VÚPOP, Bratislava.
  12. Lapin M. (2004): Detection of changes in the regime of selected climatological elements at Hurbanovo. Contributions to Geophysics and Geodesy, 2: 169-193.
  13. Lapin M., Melo M. (2005): Spatial interpretation of climatic scenario outputs in Hron and Váh river basins using geostatistical methods. In: Pekárová P. (ed.): Scenarios of Changes in Selected Components of Hydrosphere and Biosphere in Hron and Váh River Basins under Climatic Change. VEDA, Bratislava, 49-80. (in Slovak)
  14. Lapin M., Melo M., Damborská I., Vojtek M., Martini M. (2005): Issues connected with physically and statistically correct downscaling of the GCMs outputs in daily time series and selected results. In: Rožnovský J., Litschman T. (eds): Proc. Int. Symposium Bioklimatologie současnosti a budoucnosti, September 12-14, 2005, Brno-Křtiny, CD-ROM. (in Slovak)
  15. Linkeš V., Gromová A., Lupták D., Pestún V., Poliak P. (1988): System of Soil Information. Príroda, Bratislava. (in Slovak)
  16. Nakicenovic N., Swart R.J. (2000): Emissions Scenarios 2000 - Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  17. Nicks A.D., Richardson C.W., Williams J.R. (1990): Evaluation of the EPIC model weather generator. In: Sharpley A.N., Williams J.R. (eds): Erosion/Productivity Impact Calculator, 1. Model Documentation. USDA-ARS Technical Bulletin 1768.
  18. Orfánus T., Balkovič J., Skalová J., Šútor J (2003): Methodology for creating of soil water retention spatial maps using the Soil Information System ISOP. In: 11. posterový deň s medzinárodnou účasťou "Transport vody, chemikálií a energie v systéme pôda - rastlina - atmosféra", CD-ROM Proceeding, ÚH SAV, GFÚ SAV: 431-444.
  19. Putnam J., Williams J., Sawyer D. (1988): Using the erosion-productivity impact calculator (EPIC) to estimate the impact of soil erosion for the 1985 RCA appraisal. Journal of Soil and Water Conservation, 43: 321-326.
  20. Schaap M.G., Leij F.J., Van Genuchten M.T. (1997): A bootstrap-neural network approach to predict soil hydraulic parameters. In: Proc. Int. Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media., U.S. Salinity Laboratory USDA, ARS, Riverside, 1237-1250.
  21. Schmid E., Balkovič J., Skalský R. (2007): Biophysical impact assessment of crop land management strategies in EU25 using EPIC. In: Stolbovoy V., Montanarella L., Panagos P. (eds): Carbon Sink Enhancement in Soils of Europe: Data, Modeling, Verification. Luxembourg, 160-183.
  22. Smith J., Smith P., Wattenbach M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M., Reginster I., Ewert F. (2005): Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 11: 2141-2152. Go to original source... Go to PubMed...
  23. Smith P., Fang C., Dawson J., Moncrieff J. (2008): Impact of global warming on soil organic carbon. Advances in Agronomy, 97: 1-43. Go to original source...
  24. Sobocká J., Balkovič J., Lapin M. (2007): A CENTURY 5 model using for estimation of soil organic matter behaviour at predicted climate change. Soil and Water Research, 2: 25- 34. Go to original source...
  25. StatSoft (2001): Statistica. Data analysis software system 6. Tulsa, Oklahoma.
  26. Stockle C.O., Williams J.R., Rosenberg N.J., Jones C.A. (1992): A method for estimating the direct and climatic effects on rising atmospheric carbon dioxide on growth and yield of crops: Part I - Modification of the EPIC model for climate change analysis. Agricultural Systems, 38: 225-238. Go to original source...
  27. Wallis T.W.R., Griffiths J.F. (1995): An assessment of the weather generator (WXGEN) used in the erosion/ productivity impact calculator (EPIC). Agricultural and Forest Meteorology, 73: 115-133. Go to original source...
  28. Van Camp L., Bujarrabal B., Gentile A.R., Jones R.J.A., Montanarella L., Olazabal C., Selvaradjou S.K. (eds) (2004): Organic Matter and Biodiversity, Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Vol. III. OOP EC, EUR 21319 EN/3, Luxembourg.
  29. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J., Dokken D.J. (eds) (2000): Land Use, Land-Use Change, and Forestry. A special Report of the IPCC. Cambridge, Cambridge University Press.
  30. Williams J.R. (1995): The EPIC model. In: Singh V.P. (ed.): Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, 909-1000.
  31. Williams J.R., Jones C.A., Dyke P.T. (1984): A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE, 27:129-144. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.