Soil & Water Res., 2011, 6(4):165-172 | DOI: 10.17221/24/2011-SWR

Building soil spectral library of the Czech soils for quantitative digital soil mappingOriginal Paper

Lukáš BRODSKÝ, Aleš KLEMENT, Vít PENÍŽEK, Radka KODEŠOVÁ, Luboš BORŮVKA
Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

Spectral libraries are the data archives of spectral signatures measured on natural and/or man-made materials. Here, the objective is to build a soil spectral library of the Czech soils (SSL-CZ). Further on, the overall aim is to apply diffuse reflectance spectroscopy as a tool for digital soil mapping. An inevitable part of the library is a metadata database that stores the corresponding auxiliary information on the soils: type of material (soil, parent material), sample preparation, location of the sample with geographic coordinates, soil classification, morphological features, soil laboratory measurements - chemical, physical, and potential biological properties, geophysical features of and climatological information on the sample location. The metadata database consists of seven general tables (General, Spatial, Soil class, Environmental, Auxiliary, Analytical and Spectra) relationally linked together. The stored information allows for a wide range of analyses and for modelling developments of digital soil mapping applications. An example of partial least-square regression (PLSR) modelling for soil pH and clay content with 0.84 and 0.68 coefficients of determination is provided on the subset of the collected data. Currently, the SSL-CZ database contains more than 500 records in the first phase of development. Spectral reflectance signatures are stored in the range of 350 to 2500 nm with a step of 1 nm measured by ASD FieldSpec 3. The soil spectral library developed is fully compatible with Global Soil Spectral Library (Soil Spectroscopy Group).

Keywords: diffuse reflectance spectroscopy; digital soil mapping; soil; spectral library

Published: December 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BRODSKÝ L, KLEMENT A, PENÍŽEK V, KODEŠOVÁ R, BORŮVKA L. Building soil spectral library of the Czech soils for quantitative digital soil mapping. Soil & Water Res. 2011;6(4):165-172. doi: 10.17221/24/2011-SWR.
Download citation

References

  1. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. (2009): The ASTER spectral library version 2.0. Remote Sensing of Environment, 113: 711-715. Go to original source...
  2. Bower C.A., Hatcher J.T. (1966): Simultaneous determination of surface area and cation-exchange capacity. Soil Science Society of America Proceedings, 30: 525-527. Go to original source...
  3. Brown D.J. (2007): Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma, 140: 444-453. Go to original source...
  4. Christensen P.R., Bandfield J.L., Hamilton V.E., Howard D.A., Lane M.D., Piatek J.L., Tiff S.W., Stefanov W.L. (2000): A thermal emission spectral library of rockforming minerals. Journal of Geophysical Research, 105: 9735-9739. Go to original source...
  5. Clark R.N., Swayze G.A., Wise R., Livo E., Hoefen T., Kokaly R., Sutley S.J. (2007): USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231. Go to original source...
  6. Eddy W.F. (1977): A new convex hull algorithm for planar sets. ACM Transactions on Mathematical Software, 3: 398-403. Go to original source...
  7. FAO (1998): World Reference Base for Soil Resources. World Soil Resources Report 84. FAO, Rome.
  8. Flint A.L., Flint L.E. (2002): Particle density. In: Dane J.H., Topp G.C. (eds): Methods of Soil Analysis, Part 4 - Physical Methods. Soil Science Society of America, Inc., Madison, 229-240. Go to original source...
  9. Gee G.W., Or D. (2002): Particle-size analysis, In: Dane J.H., Topp G.C. (eds): Methods of Soil Analysis, Part 4 - Physical Methods. Soil Science Society of America, Inc., Madison, 255-294.
  10. ISO 10390 (1994): Standard of Soil Quality - Determination of pH. International Organization of Standardization, Geneva.
  11. Klute A. (1996): Methods of Soil Analysis. Agronomy Monograph No. 9, American Society of Agronomy, Madison.
  12. Kodešová R., Kočárek M., Kodeš V., Drábek O., Kozák J., Hejtmánková K. (2010): Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186:540-550. Go to original source... Go to PubMed...
  13. Kozák J., Němeček J., Jetmar M. (1996): The database of soil information system - PUGIS. Rostlinná Výroba, 42: 529-534.
  14. Květoň V., Žák M. (2007): New climate atlas of Czechia. Studia Geophysica et Geodaetica, 51: 345-349. Go to original source...
  15. Looppert H.R., Suarez L.D. (1996): Carbonate and gypsum. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds): Methods of Soil Analysis. Part 3 - Chemical Methods. Soil Science Society of America, Inc., Madison, 437-474.
  16. Mehlich A. (1984): Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  17. Quitt E. (1971): Klimatické oblasti Československa. Academia, Studia Geographica 16, GÚ ČSAV, Brno. (in Czech)
  18. Raman (2006): Raman Spectra of Minerals. Available at https://www.fis.unipr.it/phevix/ramandb.php (accessed March 1, 2006)
  19. Selige T., Bohner J, Schmidhalter U. (2006): High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma, 136: 235-244. Go to original source...
  20. Skjemstad J.O., Baldock J.A. (2008): Total and organic carbon. In: Carter M.R., Gregorich E.G. (eds): Soil Sampling and Method of Analysis. Canadian Society of Soil Science, Taylor and Francis, Boca Raton, 225-237. Go to original source...
  21. Viscarra Rossel R. (2008): The Soil Spectroscopy Group and the development of a global soil spectral library. Pedometron, The Newsletter of the Pedometrrics Commission of the IUSS, Issue 25.
  22. Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59-75. Recieved for publication April 21, 2011 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.