Soil & Water Res., 2015, 10(2):99-104 | DOI: 10.17221/63/2014-SWR
Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeterOriginal Paper
- Kashmar Higher Education Institute, Kashmar, Iran
Weighing lysimeters are used to measure crop evapotranspiration (ETC) during the growing season. A ratio of crop evapotranspiration to reference evapotranspiration (ETo) determines a crop coefficient (Kc) value, which is related to a specific crop growth development stage. Determination of Kc is important for estimating crop irrigation requirements using meteorological data from weather stations. The research was conducted to determine growth-stage-specific Kc and compare them to existing FAO Kc values by investigating water use of maize (Zea mays L.) at the Water Technology Center Research Field in the Indian Agricultural Research Institute (IARI), New Delhi, India in 2010. Three lysimeters, weighing about 3.5 t, contained undisturbed 1.5 m deep soil monoliths. Accumulated seasonal crop water use was about 411 mm and the Kc values determined for maize during the growing season varied from 0.53 to 1.21. The calculated and measured evapotranspiration values were compared to assess the performance of the crop coefficient. The Nash-Sutcliffe efficiency (NSE), the ratio of the root mean square error to the standard deviation of measured data (RSR), the root mean square error (RMSE) itself, and the coefficient of determination (R2) values indicated that the Kc performed 'Good' in estimating the seasonal evapotranspiration of maize. However, with respect to particular growth stages, the agreement between the calculated and measured values varied from 'Satisfactory' to 'Very Good'. The Kc values for the initial, crop development, mid-season, and late stages were 0.40-0.60, 0.70-0.80, 1.1-1.21, and 0.50-0.65, respectively, while the values reported for maize by FAO are 0.3, 1.2, 0.3-0.6 for the initial, mid-season and late stage, respectively. The measured Kc values were different up to some extent from the FAO reported values; the cause might be that FAO Kc values are generalized ones and recommended for a wide range of climatic conditions. Other causes might be that different maize varieties have different crop water use and evapotranspiration patterns. So, determination of Kc for crops in different regions and climates is important to improve irrigation water management.
Keywords: crop coefficient; evapotranspiration; maize; weighing lysimeter
Published: June 30, 2015 Show citation
References
- ASCE-EWRI (2005): The ASCE Standardized Reference Evapotranspiration Equation. Reston, Environmental and Water Resources Institute, American Society of Civil Engineers.
- Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome, FAO.
- Allen R.G. (2000): Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology, 229: 27-41.
Go to original source...
- Baker J.T., Gitz D.C., Payton P., Wanjura D.F., Upchurch D.R. (2007): Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. Agronomy Journal, 99: 637-644.
Go to original source...
- Bodner G., Loiskandl W., Kaulm H. (2007): Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agricultural Water Management, 93: 85-98.
Go to original source...
- Bruce J.A. (1997): Does transpiration control stomata responses to water vapor pressure deficit? Plant Cell and Environment, 20: 136-141.
Go to original source...
- Cakir R. (2004): Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89: 1-16.
Go to original source...
- Cornic G., Massassi A. (1996): Leaf photosynthesis under drought stress. In: Baker N.R. (ed.): Photosynthesis and the Environment. Dordrecht, Kluwer Academic Publishers.
Go to original source...
- Hatfield J.L., Prueger J.H., Reicosky D.C. (1996): Evapotranspiration effects on water quality. In: Proc. ASAE Int. Conf. Evapotranspiration and Irrigation Scheduling, Nov 3-6, 1996, San Antonio: 536-546.
- Howell T.A., Yazar A., Schneider A.D., Dusek D.A., Copeland K.S. (1995): Yield and water use efficiency of corn in response to LEPA irrigation. Transactions of the ASAE, 38: 1737-1747.
Go to original source...
- Hsiao T.C., Heng L., Steduto P., Rojas-Lara B., Raes D., Fereres E. (2009): Aqua crop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101: 448-459.
Go to original source...
- Jensen M.E., Burman R.D., Allen R.G. (1990): Evapotranspiration and Irrigation Water Requirements. Manual No. 70, Committee on Irrigation Water Requirements, Irrigation and Drainage Division of ASCE, New York, American Society of Civil Engineers.
- Ko J., Piccinni G., Marek T., Howell T. (2009): Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat. Agricultural Water Management, 96: 1691-1697.
Go to original source...
- Liu Y., Luo Y.A. (2010): Consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agricultural Water Management, 97: 31-40.
Go to original source...
- Martinez-Cob A. (2008): Use of thermal units to estimate corn crop coefficients under semiarid climatic conditions. Irrigation Science, 26: 335-345.
Go to original source...
- Moriasi D.N., Amold J., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. (2007): Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50: 885-900.
Go to original source...
- Morton F.I. (1983): Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66: 1-76.
Go to original source...
- Pandey P., Pandey V. (2011): Lysimeter based crop coefficients for estimation of crop evapotranspiration of black gram (Vigna mungo L.) in sub-humid region. International Journal of Agricultural & Biological Engineering, 4: 50-58.
- Peterson T.C., Golubev V.S., Groisman P. (1995): Evaporation losing its strength. Nature, 377: 687-688.
Go to original source...
- Smith M., Allen R., Monteith J.L. (1992): Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements. Rome, FAO, Land and Water Development Division.
- Thornthwaite C.W. (1944): Report of the Committee on Transpiration and Evaporation. Transaction of the American Geophysical Union, 25: 683-693.
Go to original source...
- Tyagi N.K., Sharma D.K., Luthra S.K. (2000): Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agricultural Water Management, 45: 41-54.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.