Soil & Water Res., 2019, 14(3):145-152 | DOI: 10.17221/71/2018-SWR

Carbon pool in soil under organic and conventional farming systemsOriginal Paper

Magdalena Hábová1, Lubica Pospíšilová1, Petr Hlavinka2,3, Miroslav Trnka2,3, Gabriela Barančíková4, Zuzana Tarasovičová4, Jozef Takáč4, Štefan Koco4, Ladislav Menšík5, Pavel Nerušil5
1 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Brno, Czech Republic
2 Department of Agro systems and Bioclimatology, Faculty of AgriScience, Mendel University in Brno, Brno, Czech Republic
3 Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
4 National Agricultural and Food Centre, Soil Science and Conservation Research Institute, Prešov, Slovakia
5 Division of Crop Management Systems, Crop Research Institute, Prague-Ruzyně, Czech Republic

Changes in the agricultural management and climatic changes within the past 25 years have had a serious impact on soil organic matter content and contribute to different carbon storage in the soil. Prediction of soil carbon pool, validation, and quantification of different models is important for sustainable agriculture in the future and for this purpose a long-term monitoring data set is required. RothC-26.3 model was applied for carbon stock simulation within two different climatic scenarios (hot-dry with rapid temperature increasing and warm-dry with less rapid temperature increasing). Ten years experimental data set have been received from conventional and organic farming of experimental plots of Mendel University School Enterprise (locality Vatín, Czech-Moravian Highland). Average annual temperature in this area is 6.9°C, average annual precipitation 621 mm, and altitude 530 m above sea level. Soil was classified as Eutric Cambisol, sandy loam textured, with middle organic carbon content. Its cumulative potential was assessed as high. Results showed linear correlation between carbon stock and climatic scenario, and mostly temperature and type of soil management has influenced carbon stock. In spite of lower organic carbon inputs under organic farming this was less depending on climatic changes. Conventional farming showed higher carbon stock during decades 2000-2100 because of higher carbon input. Besides conventional farming was more affected by temperature.

Keywords: crop management and climatic scenarios; RothC-26.3 model; soil organic carbon

Published: September 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hábová M, Pospíšilová L, Hlavinka P, Trnka M, Barančíková G, Tarasovičová Z, et al.. Carbon pool in soil under organic and conventional farming systems. Soil & Water Res. 2019;14(3):145-152. doi: 10.17221/71/2018-SWR.
Download citation

References

  1. Baldock J.A., Skjemstad J.O. (1999): Soil organic carbon/soil organic matter. In: Peverill K.I., Sparow L.A., Reuter D.J. (eds.): Soil Analysis: An Interpretation Manual. Collingwood, CSIRO Publishing: 159-170.
  2. Barančíková G. (2005): Final Report of the Fellowship of Dr. G. Barancikova within the Framework of the METAGE Project (EV/10/14A), Louvain-la-Neuve, 2005: 9.
  3. Barančíková G., Skalský R., Koco Š., Halas J., Tarasovičová Z., Nováková M. (2014): Farm-level modelling of soil organic carbon sequestration under climate and land use change. In: Halldórsson G., Bampa F., Porsteinsdóttir A.B. (eds.): Soil Carbon Sequestration for Climate Food Security and Ecosystem Services. Luxembourg, Publications Office of the European Union: 94-100.
  4. Bielek P., Jurčová O. (2010): Methodology for Organic Carbon Balance and Setting up the Organic Fertilization Rates for Agricultural Soils. Bratislava, Soil Conservation and Research Institute. (in Slovak)
  5. Coleman K., Jenkinson D.S. (2005): ROTHC-26.3. A Model for the Turnover of Carbon in Soil. Model Description and Windows Users' Guide, November 1999 Issue (modified April, 2005). Available at http://www.rothamsted.bbsrc.ac.uk/aen/carbon/mod26_3_win.pdf (accessed Jan 2018).
  6. Coleman K., Jenkinson D.S., Crocker G.J., Grace P.R., Klir J., Körschens M., Poulton P.R., Richter D.D. (1997): Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 81: 29-44. Go to original source...
  7. De Liu L., O'Leary G.J., Ma Y., Cowie A., Li F.Y., McCaskill M., Conyer M., Dalal R., Robertson F., Dougherty W. (2016): Modelling soil organic carbon 2. Changes under a range of cropping and grazing farming systems in eastern Australia. Geoderma, 265: 164-175. Go to original source...
  8. Falloon P., Smith P. (2002): Simulating SOC changes in long-term experiments with RothC and century: model evaluation for regional scale application. Journal of Soil Use and Management, 18: 101-111. Go to original source...
  9. Falloon P., Smith P., Coleman K., Marshall S. (1998): Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Journal of Biology and Biochemistry, 30: 1207-1211. Go to original source...
  10. Falloon P., Smith P., Coleman K., Marshall S. (2000): How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon mode? Journal of Biology and Biochemistry, 32: 433-436. Go to original source...
  11. IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015, Rome, FAO. Available at http://www.fao.org/3/a-i3794e.pdf (accessed Jan 2018)
  12. Jahn R., Blume H.P., Asio V.B., Spaargaren O., Schad P. (2006): Guidelines for Soil Description, 4th Ed. Rome, FAO.
  13. Jenkinson D.S., Hart P.B.S., Rayner J.H., Parry L.C. (1987): Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTELCOL Bulletin, 15: 1-8.
  14. Jenkinson D.S., Meredith J., Kinyamario J.I., Waren G.P., Wong M.T.H., Harkness D.D., Bol R., Coleman K. (1999): Estimating net primary production from measurements made on soil organic matter. Ecology, 80: 2762-2773. Go to original source...
  15. Kaczynski R., Siebiele G., Galazka R., Niedzwieck J.M., Polakova S. (2013): Assessment of Soil Organic Carbon Status and Changes in Soils of Polish-Czech Borderland. Brno, Central Institute for Supervising and Testing in Agriculture. (in Czech)
  16. Keryn P., Polglase P. (2004): Calibration of the RothC model to turnover of soil carbon under eucalypts and pines. In: 3rd Australian New Zealand Conf., Dec 5-9, 2004: 1-3. Available at www.regional.org.au/au/assi/ (accessed Jan 2018)
  17. King J.A., Bradley R.I., Harrison R. (2005): Current trends of soil organic carbon in English arable soils. Journal of Soil Use and Management, 21: 189-195. Go to original source...
  18. Kučerík J., Šmejkalová D., Čechlovská H., Pekař M. (2007): New insights into aggregation and conformational behaviour of humic substances: Application of high resolution ultrasonic spectroscopy. Organic Geochemistry, 38: 2098-2110. Go to original source...
  19. Lamar R., deTourdonnet S., Barz P., During R.A., Frielinghaus M., Kolli R., Kubát J., Medveděv V., Netland J., Picard D. (2006): Prospect for conservation agriculture in northern and eastern European countries. Lesson of KASSA. Bibliotheca Fragmenta Agronomica, 11: 77-88.
  20. Loague K., Green E.E. (1991): Statistical and graphic methods for evaluating solute transport models. Overview and application. Journal Contaminant Hydrology, 7: 51-73. Go to original source...
  21. Lorenz K., Lal R. (2005): The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances of Agronomy, 88: 35-66. Go to original source...
  22. Machmuller M.B., Kramer M.G., Cyle T.K., Hill N., Hancock D., Thomson A. (2015): Emerging land use practices rapidly increase soil organic matter. Nature Communications, 6: 6995. Go to original source... Go to PubMed...
  23. Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L. et al. (eds.): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, SSSA Book Series No. 5, SSSA and ASA: 961-1010. Go to original source...
  24. Němeček J. et al. (2011): Taxonomic Soil System of the Czech Republic. 2nd Ed. Prague, Czech Agricultural University Prague. (in Czech)
  25. Pohanková E., Hlavinka P., Takáč J., Žalud Z., Trnka M. (2015): Calibration and validation of the crop growth model DAISY for spring barley in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63: 1177-1186. Go to original source...
  26. Pospíšilová L., Vlček V., Hybler V., Hábová M., Jandák J. (2016): Standard analytical methods and evaluation criteria of soil physical, agrochemical, biological and hygienic parameters. Folia Universitatis Agriculturae at Silviculturae Mendelianae Brunensis, IX, 2016, 3.
  27. Rötter R.P., Palosuo T., Pirttioja N.K., Dubrovsky M., Salo T., Fronzek S., Aikasalo R., Trnka M., Ristolainen A., Carter T.R. (2011): What would happen to barely production in Finland if global warming exceeded 4°C? A model-based assessment. European Journal of Agronomy, 35: 205-214. Go to original source...
  28. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H.M., Klein-Gunnewiek R., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thorney J.H.M., Whitmore A.P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81: 153-225. Go to original source...
  29. Smith J., Smith P., Wattenbach M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M., Reginster I., Ewert F. (2005): Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 11: 2141-2152. Go to original source... Go to PubMed...
  30. Smith J., Smith P., Wattenbach M., Gottschalk P., Romanenkov V.A., Sevcova L.K., Sirotenko O.D., Rukhovic D.I., Korolova P.V., Romanenko I.A., Lisovoj N.V. (2007): Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine 1990- 2070. Global Change Biology, 13: 342-354. Go to original source...
  31. Smith P., Faloon P., Kutsch W.L. (2010): The role of soils in the Kyoto protocol. In: Kutsch W.L., Bahn M., Heinemeyer A. (eds.): Soil Carbon Dynamics. An Integrated Methodology. Cambridge, Cambridge University Press: 245-256. Go to original source...
  32. Song X., Liu S., Liu Q., Zhang W., Hu Ch. (2014): Carbon sequestration in soil humic substances under long-term 399 fertilization in a wheat-maize system from North China. Journal of Integrative Agriculture, 13: 562-569. Go to original source...
  33. Stevenson F.J. (1994): Humus Chemistry. 2nd Ed. Genesis, Composition and Reactions. New York, Wiley.
  34. Taylor K.E., Stouffer R.J., Meehl G.A. (2012): An overview of CMIP5 and the experiment design. Bulletin American Meteorological Society, 93: 485-498 Go to original source...
  35. Tesařová M., Kudlička P., Pospíšilová L., Kalhotka L., Hrabě F. (2006): Comparison of mineralisation and humification of postharvest residues of cereals in conventional and organic cropping practices. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 54: 121-126. Go to original source...
  36. Viscarra Rossel R.A., Brus D.J., Lobsey C., Shis Z., McLachlan G. (2016): Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model- assisted and model-based inference. Geoderma, 265: 152-163. Go to original source...
  37. Zbíral J., Honsa I. et al. (2010): Unified Working Instructions. Soil Analysis I. 3rd Ed. Brno, Central Institute for Supervising and Testing in Agriculture. (in Czech)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.