Soil & Water Res., 2021, 16(2):129-135 | DOI: 10.17221/167/2020-SWR

Thallium uptake/tolerance in a model (hyper)accumulating plant: Effect of extreme contaminant loadsOriginal Paper

Ondřej Holubík ORCID...*,1,2, Aleš Vaněk ORCID...1, Martin Mihaljevič ORCID...3, Kateřina Vejvodová ORCID...1
1 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Department of Soil Science and Soil Conservation, Research Institute for Soil and Water Conservation, Prague, Czech Republic
3 Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic

Thallium (Tl) is a toxic trace element with a highly negative effect on the environment. For phytoextraction purposes, it is important to know the limitations of plant growth. In this study, we conducted experiments with a model Tl-hyperaccumulating plant (Sinapis alba L., white mustard) to better understand the plant tolerance and/or associated detoxification mechanisms under extreme Tl doses (accumulative 0.7/1.4 mg Tl, in total). Both the hydroponic/semi-hydroponic (artificial soil) cultivation variants were studied in detail. The Tl bioaccumulation potential for the tested plant reached up to 1% of the total supplied Tl amount. Furthermore, it was revealed that the plants grown in the soil-like system did not tolerate Tl concentrations in nutrient solutions higher than ~1 mg/L, i.e., wilting symptoms were evident. Surprisingly, for the plants grown in hydroponic solutions, the tolerable Tl concentration was by contrast at least 2-times higher (≥ 2 mg Tl/L), presumably mimicking the K biochemistry. The obtained hydroponic/semi-hydroponic phytoextraction data can serve, in combination, as a model for plant-assisted remediation of soils or mining/processing wastes enriched in Tl, or possibly for environmental cycling of Tl in general.

Keywords: artificial soil; bioaccumulation; hydroponic; phytoextraction; Tl; uptake

Published: April 14, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Holubík O, Vaněk A, Mihaljevič M, Vejvodová K. Thallium uptake/tolerance in a model (hyper)accumulating plant: Effect of extreme contaminant loads. Soil & Water Res. 2021;16(2):129-135. doi: 10.17221/167/2020-SWR.
Download citation

References

  1. Adriano D.C. (2001): Trace Elements in Terrestrial Environments. New York, Springer New York. Go to original source...
  2. Al-Najar H., Schulz R., Römheld V. (2003): Plant availability of thallium in the rhizosphere of hyperaccumulator plants: A key factor for assessment of phytoextraction. Plant and Soil, 249: 97-105. Go to original source...
  3. Čechmánková J., Vácha R., Skála J., Havelková M. (2011): Heavy metals phytoextraction from heavily and moderately contaminated soil by field crops grown in monoculture and crop rotation. Soil and Water Research, 6: 120-130. Go to original source...
  4. Corzo Remigio A., Chaney R.L., Baker A.J.M., Edraki M., Erskine P.D., Echevarria G., van der Ent A. (2020): Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 449: 11-37. Go to original source...
  5. Fargašová A. (2004): Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant, Soil and Environment, 50: 33-38. Go to original source...
  6. Galván-Arzate S., Santamaría A. (1998): Thallium toxicity. Toxicology Letters, 99: 1-13. Go to original source... Go to PubMed...
  7. Grösslová Z., Vaněk A., Mihaljevič M., Ettler V., Hojdová M., Zádorová T., Pavlů L., Penížek V., Vaněčková B., Komárek M., Chrastný V., Ash C. (2015): Bioaccumulation of thallium in a neutral soil as affected by solid-phase association. Journal of Geochemical Exploration, 159: 208-212. Go to original source...
  8. Gutiérrez M., Mickus K., Camacho L.M. (2016): Abandoned Pb Zn mining wastes and their mobility as proxy to toxicity: A review. Science of the Total Environment, 565: 392-400. Go to original source... Go to PubMed...
  9. Harmsen J. (2007): Measuring bioavailability: From a scientific approach to standard methods. Journal of Environmental Quality, 36: 1420-1428. Go to original source... Go to PubMed...
  10. Hladun K.R., Parker D.R., Trumble J.T. (2015): Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: Implications for plant performance and pollination. Journal of Chemical Ecology, 41: 386-395. Go to original source... Go to PubMed...
  11. Holubík O., Vaněk A., Mihaljevič M., Vejvodová K. (2020): Higher Tl bioaccessibility in white mustard (hyper-accumulator) grown under the soil than hydroponic conditions: A key factor for the phytoextraction use. Journal of Environmental Management, 255: 109880. Go to original source... Go to PubMed...
  12. Kabata-Pendias A., Pendias H. (1992): Trace Elements in Soils and Plants. 2nd Ed., Boca Raton, CRC Press. Kabata-Pendias A., Sadurski W. (2004): Trace elements and compounds in soil. In: Merian E., Anke M., Ihnat M., Stoeppler M. (eds.): Elements and their Compounds in the Environment. 2nd Ed. Weinheim, Wiley-VCH: 79-99. Go to original source...
  13. Kazantzis G. (2000): Thallium in the environment and health effects. Environmental Geochemistry and Health, 22: 275-280. Go to original source...
  14. Kim D.J., Park B.C., Ahn B.K., Lee J.H. (2016): Thallium uptake and translocation in barley and sunflower grown in hydroponic conditions. International Journal of Environmental Research, 10: 575-582.
  15. Krämer U. (2010): Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61: 517-534. Go to original source... Go to PubMed...
  16. Krasnodębska-Ostręga B., Sadowska M., Ostrowska S. (2012): Thallium speciation in plant tissues-Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals. Talanta, 93: 326-329. Go to original source... Go to PubMed...
  17. Kwan K.H.M., Smith S. (1991): Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna minor L. New Phytologist, 117: 91-102. Go to original source...
  18. Leblanc M., Petit D., Deram A., Robinson B.H., Brooks R.R. (1999): The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Economic Geology, 94: 109-113. Go to original source...
  19. Liu J., Wei X., Zhou Y., Tsang D.C.W., Yin M., Lippold H., Yuan W., Wang J., Feng Y., Chen D. (2020): Thallium contamination, health risk assessment and source apportionment in common vegetables. Science of the Total Environment, 703: 135547. Go to original source... Go to PubMed...
  20. Madejón P., Murillo J.M., Marañón T., Lepp N.W. (2007): Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere, 67: 20-28. Go to original source... Go to PubMed...
  21. Mazur R., Sadowska M., Kowalewska Ł., Abratowska A., Kalaji H.M., Mostowska A., Garstka M., KrasnodębskaOstręga B. (2016): Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biology, 16: 191. Go to original source... Go to PubMed...
  22. Merian E., Clarkson T.W. (1991): Metals and their Compounds in the Environment : Occurrence, Analysis, and Biological Relevance. Weinheim, Wiley-VCH.
  23. Mestek O., Polák J., Juříček M., Karvánková P., Koplík R., Šantrůček J., Kodíček M. (2007): Trace element distribution and species fractionation in Brassica napus plant. Applied Organometallic Chemistry, 21: 468-474. Go to original source...
  24. Ning Z., He L., Xiao T., Márton L. (2015): High accumulation and subcellular distribution of thallium in green cabbage (Brassica oleracea L. var. capitata L.). International Journal of Phytoremediation, 17: 1097-1104. Go to original source... Go to PubMed...
  25. OECD (2009): OECD Guidelines for the Testing of Chemicals. Oecd/Ocde 220 Draft Documents. Available at https://www.oecd.org/chemicalsafety/testing/44098118.pdf
  26. Pavlíčková J., Zbíral J., Smatanová M., Habarta P., Houserová P., Kubáň V. (2006): Uptake of thallium from artificially contaminated soils by kale (Brassica oleracea L. var. acephala). Plant, Soil and Environment, 52: 544-549. Go to original source...
  27. Reid P.H., York E.T. (1958): Effect of nutrient deficiencies on growth and fruiting characteristics of peanuts in sand cultures. Agronomy Journal, 50: 63. Go to original source...
  28. Sager M. (1994): Thallium. Toxicological & Environmental Chemistry, 45: 11-32. Go to original source...
  29. Scheckel K.G., Lombi E., Rock S.A., McLaughlin M.J. (2004): In vivo synchrotron study of thallium speciation and compartmentation in Iberis intermedia. Environmental Science & Technology, 38: 5095-5100. Go to original source... Go to PubMed...
  30. Taiz L., Zeiger E. (2003): Plant Physiology. 3rd Ed. Sunderland, Sinauer Associates, Inc. Publishers
  31. Tremel A., Masson P., Sterckeman T., Baize D., Mench M. (1997): Thallium in French agrosystems - I. Thallium contents in arable soils. Environmental Pollution, 95: 293-302. Go to original source... Go to PubMed...
  32. Vácha R., Skála J., Čechmánková J., Horváthová V., Hladík J. (2015): Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. Journal of Soils and Sediments, 15: 1813-1824. Go to original source...
  33. Van Der Ent A., Baker A.J.M., Reeves R.D., Pollard A.J., Schat H. (2013): Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362: 319-334. Go to original source...
  34. Vaněk A., Mihaljevič M., Galušková I., Chrastný V., Komárek M., Penížek V., Zádorová T., Drábek O. (2013): Phase-dependent phytoavailability of thallium - A synthetic soil experiment. Journal of Hazardous Materials, 250-251: 265-271. Go to original source... Go to PubMed...
  35. Vaněk A., Holubík O., Oborná V., Mihaljevič M., Trubač J., Ettler V., Pavlů L., Vokurková P., Penížek V., Zádorová T., Voegelin A. (2019): Thallium stable isotope fractionation in white mustard: Implications for metal transfers and incorporation in plants. Journal of Hazardous Materials, 369: 521-527. Go to original source... Go to PubMed...
  36. Xiao T., Guha J., Boyle D., Liu C.-Q., Chen J. (2004): Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of the Total Environment, 318: 223-244. Go to original source... Go to PubMed...
  37. Xiao T., Yang F., Li S., Zheng B., Ning Z. (2012): Thallium pollution in China: A geo-environmental perspective. Science of the Total Environment, 421-422: 51-58. Go to original source... Go to PubMed...
  38. Yang C., Chen Y., Peng P., Li C., Chang X., Wu Y. (2009): Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry. Journal of Hazardous Materials, 167: 835-845. Go to original source... Go to PubMed...
  39. Zayed A., Gowthaman S., Terry N. (1998): Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27: 715. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.