Soil & Water Res., 2022, 17(3):158-169 | DOI: 10.17221/148/2021-SWR
Construction and calibration of a portable rain simulator designed for the in situ research of soil resistance to erosionOriginal Paper
- 1 Ecological Engineering for Soil and Water Resource Protection, Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- 2 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- 3 Mining Institute Belgrade, Belgrade, Serbia
Land degradation caused by erosion processes is a widespread global problem. Rain simulators are one of the tools often used to determine the resistance of soils to erosion processes. The aim of this publication is to present the process of the construction and calibration of a small, portable field simulator which would be implemented in research studies designed to determine the changes in the soils' shear strength parameters in forested areas (in situ) caused by a change in soil moisture content achieved by the rain simulation. The constructed simulator consists of a metal frame, sprayers (with specific nozzles), a sediment funnel/tray made of metal, water and a sediment collector unit, a water tank and pump, and a set of rubber hoses, manometer, valves, reducers, adapters and other supplementary equipment. The calibration was carried out by using the pluviometric method. The choice of nozzles was based on the criteria of low water consumption (losses), the Christiansen uniformity coefficient (CU) and the possibility of achieving specific downpour intensities for the investigated area. The further calibration of the device consisted of determining the raindrop diameter and the distribution of the rainfall when the simulator is positioned on the slopes (7° and 15°). The achieved rain intensity was 1.7-1.9 mm/min, with a CU of 92.23-93.70% for the raindrop diameters (D50) equal to 1.2 mm. The kinetic energy of the simulated rain (Ke) was 2.82∙10-6 J. The constructed simulator proved itself to be in accordance with all of the given criteria, and it can successfully be implemented in research studies aimed at determining the resistance of forest soils to erosion processes, infiltration, and sediment yield.
Keywords: field rain simulator; raindrop diameter; raindrop distribution; soil erosion
Published: June 20, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abudi I., Carmi G., Berliner P. (2012): Rainfall simulator for field runoff studies. Journal of Hydrology, 454-455: 76-81.
Go to original source...
- Aerts R., Maes W., November E., Behailu M., Poesen J., Deckers J., Hermy M., Muys B. (2006): Surface runoff and seed trapping efficiency of shrubs in a regenerating semiarid woodland in northern Ethiopia. Catena, 65: 61-70.
Go to original source...
- Agassi M., Bradford J.M. (1999): Methodologies for interrill soil erosion studies. Soil and Tillage Research, 49: 277-287.
Go to original source...
- Blinkov I. (2015): Review and comparison of water erosion intensity in the Western Balkan and EU countries. Contributions, Section of Natural, Mathematical and Biotechnical Sciences, MASA, 36: 27-42.
Go to original source...
- Boix-Fayos C., Martínez-Mena M., Arnau-Rosalén E., Calvo-Cases A., Castillo V., Albaladejo J. (2006): Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews, 78: 267-285.
Go to original source...
- Borrelli P., Panagos P., Märker M., Modugno S., Schütt B. (2017): Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena, 149: 770-781.
Go to original source...
- Borrelli P., Robinson D.A., Panagos P., Lugato E., Yang J.E., Alewell C., Wuepper D., Montanarella L., Ballabio C. (2020): Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the USA, 117: 21994-22001.
Go to original source...
Go to PubMed...
- Boulange J., Malhat F., Jaikaew P., Nanko K., Watanabe H. (2019): Portable rainfall simulator for plot-scale investigation of rainfall-runoff, and transport of sediment and pollutants. International Journal of Sediment Research, 34: 38-47.
Go to original source...
- Boxel Van J.H. (1997): Numerical model for the fall speed of raindrops in a rainfall simulator. Proceedings of the Workshop on Wind and Water Erosion, 5: 77-85.
- Bryan R.B. (1974): Water erosion by splash and wash and the erodibility of Albertan soils. Geografiska Annaler: Series A, Physical Geography, 56: 159-181.
Go to original source...
- Cao L., Liang Y., Wang Y., Lu H. (2015): Runoff and soil loss from Pinus massoniana forest in Southern China after simulated rainfall. Catena, 129: 1-8.
Go to original source...
- Cerdà A. (1999): Rain simulators and their application in geomorphology: State of the art. Cuadernos de Investigación Geográfica/Geographical Research Letters, 25: 45-84. (in Spanish)
- Cerdà A., Ibáñez S., Calvo A. (1997): Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11: 163-170.
Go to original source...
- Christiansen J.E. (1942): Irrigation by sprinkling. University of California Agricultural Experiment Station Bulletin, 670: 124.
- Clarke M.A., Walsh R.P.D. (2007): A portable rainfall simulator for field assessment of splash and slopewash in remote locations. Earth Surface Processes and Landforms, 32: 2052-2069.
Go to original source...
- Corona R., Wilson T., D'Adderio L.P., Porcù F., Montaldo N., Albertson J. (2013): On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. Procedia Environmental Sciences, 19: 875-884.
Go to original source...
- Dong J., Zhang K., Guo Z. (2012): Runoff and soil erosion from highway construction spoil deposits: A rainfall simulation study. Transportation Research, Part D1: 8-14.
Go to original source...
- Dunkerley D. (2008): Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes, 22: 4415-4435.
Go to original source...
- FAO (2011): Assessing Forest Degradation: Towards the Development of Globally Applicable Guidlines Forest Resources Assessment. Forest Resources Assessment Working Paper 177. Rome, FAO.
- Gabrić O. (2014): Experimental Research of Catchment Processes: Rainfall, Runoff and Soil Erosion. [Ph.D. Thesis.] Subotica, University of Novi Sad, Faculty of Civil Engineering.
- Gavrilović S. (1972): Engineering of Torrents and Erosion. Journal of Construction (Special Issue). (in Serbian)
- Guerra A.J.T., Fullen M.A., do Carmo M.O.J., Bezerra J.F.R., Shokr M.S. (2017): Slope processes, mass movement and soil erosion: A review. Pedosphere, 27: 27-41.
Go to original source...
- Guo W., Xu X., Zhu T., Zhang H., Wang W., Liu Y., Zhu M. (2020): Changes in particle size distribution of suspended sediment affected by gravity erosion: A field study on steep loess slopes. Journal of Soils and Sediments, 20: 1730-1741.
Go to original source...
- Holden J., Burt T.P. (2002): Infiltration, runoff and sediment production in blanket peat catchments: Implications of field rainfall simulation experiments. Hydrological Processes, 16: 2537-2557.
Go to original source...
- Hudson N. (1993): Field Measurement of Soil Erosion and Runoff. FAO Soils Bulletin No. 68, Rome, FAO.
- Iserloh T., Fister W., Seeger M., Willger H., Ries J.B. (2012): A small portable rainfall simulator for reproducible experiments on soil erosion. Soil and Tillage Research, 124: 131-37.
Go to original source...
- Iserloh T., Ries J.B., Arnáez J., Boix-Fayos C., Butzen V., Cerdà A., Echeverría M.T., Fernández-Gálvez J., Fister W., Geißler C., Gómez J.A., Gómez-Macpherson H., Kuhn N.J., Lázaro, R., León F.J., Martínez-Mena M., Martínez-Murillo J.F., Marzen M., Mingorance M.D., Ortigosa L., Peters P., Regüés D., Ruiz-Sinoga J.D., Scholten T., Seeger M., Solé-Benet A., Wengel R., Wirtz S. (2013): European small portable rainfall simulators: A comparison of rainfall characteristics. Catena, 110: 100-112.
Go to original source...
- Jevtić Lj. (1978): Engineering Handbook for Torrent and Erosion Control. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
- Jevtić Lj (1988): Torrent Hydrology. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
- Johansen M.P., Hakonson T.E., Breshears D.D. (2001): Postfire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrological Processes, 15: 2953-2965.
Go to original source...
- Kašanin-Grubin M., Hukić E., Bellan M., Bialek K., Bosela M., Coll L., Czacharowski M., Gajica G., Giammarchi F., Gömöryová E., del Rio M., Dinca L., Đogo Mračević S., Klopčić M., Mitrović S., Pach M., Randjelović D., Ruiz-Peinado R., Skrzyszewski J., Orlić J., Štrbac S., Stojadinović S., Tonon G., Tosti T., Uhl E., Veselinović G., Veselinović M., Zlatanov T., Tognetti R. (2021): Soil erodibility in European mountain beech forests. Canadian Journal of Forest Research, 51: 1846-1855.
Go to original source...
- Kathiravelu G., Lucke T., Nichols P. (2016): Rain drop measurement techniques: A review. Water, 8: 29.
Go to original source...
- Kavian A., Mohammadi M., Cerdà A., Fallah M., Gholami L. (2019): Design, manufacture and calibration of the SARI portable rainfall simulator for field and laboratory experiments. Hydrological Sciences Journal, 64: 350-360.
Go to original source...
- Kavian A., Kalehhouei M., Gholami L., Jafarian Z., Mohammadi M., Rodrigo-Comino J. (2020): The use of straw mulches to mitigate soil erosion under different antecedent soil moistures. Water, 12: 2518.
Go to original source...
- Kolić B. (1988): Forestry Ecoclimatology. Belgrade, Naučna knjiga/Scientific Book. (in Serbian)
- Konz N., Baenninger D., Konz M., Nearing M., Alewell C. (2010): Process identification of soil erosion in steep mountain regions. Hydrology and Earth System Sciences, 14: 675-686.
Go to original source...
- Lora M., Camporese M., Salandin P. (2016): Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments. Catena, 140: 77-89.
Go to original source...
- Meshesha D.T., Tsunekawa A., Haregeweyn N. (2019): Influence of raindrop size on rainfall intensity, kinetic energy, and erosivity in a sub-humid tropical area: A case study in the northern highlands of Ethiopia. Theoretical and Applied Climatology, 136: 1221-1231.
Go to original source...
- Meyer L.D., Harmon W.C. (1979): Multiple-intensity rainfall simulator for erosion research on row sideslopes. Transactions of the ASAE, 22: 0100-0103.
Go to original source...
- Mhaske S.N., Pathak K., Basak A. (2019): A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172: 408-420.
Go to original source...
- Milosavljević K (1949): Heavy rains and showers in Belgrade. Glasnik Srpskog Geografskog Društva/Bulletin of Serbian Geographical Society, 29: 13-21. (in Serbian)
- Misra R.K., Rose C.W. (1995): An examination of the relationship between erodibility parameters and soil strength. Soil Research, 33: 715-732.
Go to original source...
- Montanarella L., Pennock D.J., McKenzie N., Badraoui M., Chude V., Baptista I., Mamo T., Yemefack M., Singh A.M., Yagi K., Young H.S., Vijarnsorn P., Zhang G.L., Arrouays D., Black H., Krasilnikov P., Sobocká J., Alegre J., Henriquez C.R., Mendonca Santos L.M., Taboada M., Espinosa-Victoria D., AlShankiti A., AlaviPanah S.K., Elsheikh E.A.E.M., Hempel J., Camps Arbestain M., Nachtergaele F., Vargas R. (2016): World's soils are under threat. Soil, 2: 79-82.
Go to original source...
- Morgan R.P.C. (2009): Soil Erosion and Conservation. Hoboken, John Wiley and Sons.
- Newesely C.G.L., Zimmerhofer W., Kohl B., Markart G., Tasser E., Tappeiner U. (2015): Rain simulation in patchy landscapes: Insights from a case study in the Central Alps. Catena, 127: 1-8.
Go to original source...
- Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Alewell C. (2015): The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54: 438-447.
Go to original source...
- Parsakhoo A., Lotfalian M., Kavian A., Hoseini S.A., Demir M. (2012): Calibration of a Portable single nozzle rainfall simulator for soil erodibility study in Hyrcanian Forests. African Journal of Agricultural Research, 7: 3957-3963.
Go to original source...
- Poesen J. (2018): Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43: 64-84.
Go to original source...
- Polovina S., Radić B., Ristić R., Kovačević J., Milčanović V., Živanović N. (2021): Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Applied Sciences, 11: 4154.
Go to original source...
- Polyakov V., Stone J., Collins C.H., Nearing M.A., Paige G., Buono J., Gomez-Pond R.L. (2018): Rainfall simulation experiments in the southwestern USA using the walnut gulch rainfall simulator. Earth System Science Data, 10: 19-26.
Go to original source...
- Qiu Y., Wang X., Xie Z., Wang Y. (2021): Effects of gravelsand mulch on the runoff, erosion, and nutrient losses in the Loess Plateau of north-western China under simulated rainfall. Soil and Water Research, 16: 22-28.
Go to original source...
- Radić Z. (1981): Modern Methods of Analysis of Water and Sediment Movement in Open Streams. Scientific Research Project. Belgrade, University of Belgrade, Faculty of Civil Engineering, Institute of Hydraulic Engineering. (in Serbian)
- Radić Z.M., Pavlović D. (2015): Spatial analysis of heavy rains of short duration in Serbia. In: Int. Conf. Achievements in Civil Engineering, Subotica, Apr 24, 2015: 641-649. (in Serbian)
- Rauch W., De Toffol S. (2006): On the issue of trend and noise in the estimation of extreme rainfall properties. Water Science and Technology, 54: 17-24.
Go to original source...
Go to PubMed...
- RHSS (2014): Republic Hydrometeorological Services of Serbia, Extraordinary Climatological Bulletin Precipitation. Available at http://www.hidmet.gov.rs/index_eng. php (accessed Feb 15, 2021). (in Serbian)
- Ristić R., Malošević D. (2011): Torrent Hydrology. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
- Sangüesa C., Arumí J., Pizarro R., Link O. (2010): A rainfall simulator for the in situ study of superficial. Chilean Journal of Agricultural Research, 70: 178-182.
Go to original source...
- Singh H.V., Thompson A.M. (2016): Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds. Geoderma, 262: 165-173.
Go to original source...
- Torri D., Colica A., Rockwell D. (1994): Preliminary study of the erosion mechanisms in a Biancana Badland (Tuscany, Italy). Catena, 23: 281-294.
Go to original source...
- Vergni L., Todisco F., Vinci A. (2018): Setup and calibration of the rainfall simulator of the masse experimental station for soil erosion studies. Catena, 167: 448-455.
Go to original source...
- Wilson T.G., Cortis C., Montaldo N., Albertson J.D. (2014): Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation. Hydrology and Earth System Sciences, 18: 4169-4183.
Go to original source...
- Yakubu M.L., Yusop Z. (2017): Adaptability of rainfall simulators as a research tool on urban sealed surfaces - a Review. Hydrological Sciences Journal, 62: 996-1012.
Go to original source...
- Zemke J.J. (2016): Runoff and soil erosion assessment on forest roads using a small scale rainfall simulator. Hydrology, 3: 25.
Go to original source...
- Zemke J.J., Enderling M., Klein A., Skubski M. (2019): The influence of soil compaction on runoff formation. A case study focusing on skid trails at forested Andosol sites. Geosciences, 9: 204.
Go to original source...
- Zhang K., Yu Y., Dong J., Yang Q., Xu X. (2019a): Adapting & Testing use of USLE K factor for agricultural soils in China. Agriculture, Ecosystems & Environment, 269: 148-55.
Go to original source...
- Zhang Y., Li X., Zhang X., Li H. (2019b): Investigating rainfall duration effects on transport of chemicals from soil to surface runoff on a loess slope under artificial rainfall conditions. Soil and Water Research, 14: 183-194.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.