Soil & Water Res., 2023, 18(1):25-32 | DOI: 10.17221/130/2022-SWR

Prediction of saturated hydraulic conductivity Ks of agricultural soil using pedotransfer functionsOriginal Paper

Kamila Bá»ková ORCID..., Svatopluk Matula, Markéta Miháliková, Eva Hrúzová, David Kwesi Abebrese, Recep Serdar Kara, Cansu Almaz
Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

The determination of the saturated hydraulic conductivity Ks on a field scale presents a challenge in which several variables have to be considered. As there is no benchmark or reference method for the Ks determination, the suitability of each available method has to be evaluated. This study is aimed at the functional evaluation of three publicly available types of pedotransfer functions (PTFs) with different levels of utilised predictors. In total, ten PTF models were applied to the 56 data sets including the measured Ks value and the required predictors (% sand, silt and clay particles, dry bulk density, and organic matter/organic carbon content). A single agricultural field with a relatively homogenous particle size distribution was selected for the study to evaluate the ability of the PTF to reflect the variability of Ks. The correlation coefficient, coefficient of determination, mean error, and root mean square error were determined to evaluate the Ks prediction quality. The results showed a high variability in Ks within the field; the measured Ks values ranged between 10 and 1261 cm/day. Although the tested PTF models are based on a robust background of soil databases, they could not provide estimates with satisfactory accuracy unless local soil data were incorporated into the PTF development.

Keywords: functional evaluation; machine learning; neural network, non-linear regression; soil hydraulic properties

Received: September 18, 2022; Accepted: November 23, 2022; Prepublished online: January 16, 2023; Published: February 8, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bá»ková K, Matula S, Miháliková M, Hrúzová E, Abebrese DK, Serdar Kara R, Almaz C. Prediction of saturated hydraulic conductivity Ks of agricultural soil using pedotransfer functions. Soil & Water Res. 2023;18(1):25-32. doi: 10.17221/130/2022-SWR.
Download citation

References

  1. Araya S.N., Ghezzehei T.A. (2019): Using machine learning for prediction of saturated hydraulic conductivity and its sensitivity to soil structural perturbations. Water Resources Research, 55: 5715-5737. Go to original source...
  2. Bouma J. (1989): Using soil survey data for quantitative land evaluation. Advances in Soil Sciences, 9: 177-213. Go to original source...
  3. Bouma J., van Lanen J.A.J. (1987): Transfer functions and threshold values: From soil characteristics to land qualities. In: Beek K.J., Burrough P.A., Mc Cormack D.E. (eds.): Quantified Land Evaluation. Proc. Workshop ISSS and SSSA, Washington, DC., 27 Apr 27-May 2, 1986: 106-110.
  4. Elith J., Leathwick J.R., Hastie T. (2008): A working guide to boosted regression trees. Journal of Animal Ecology, 77: 802-813. Go to original source... Go to PubMed...
  5. Fait G., Balderacchi M., Ferrari F., Ungaro F., Capri E., Trevisan M. (2010): A field study of the impact of different irrigation practices on herbicide leaching. European Journal of Agronomy, 32: 280-287. Go to original source...
  6. FAO-UNESCO (1974): Key to Soil Units for the New Soil Map of the World. Legend 1. Rome, FAO.
  7. Galdos M.V., Pires L.F., Cooper H.V., Calonego J.C., Rosolem C.A., Mooney S.J. (2019): Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma, 337: 1126-1135. Go to original source... Go to PubMed...
  8. Gunarathna M.H.J.P., Sakai K., Nakandakari T., Momii K., Kumari M.K.N. (2019): Machine learning approaches to develop pedotransfer functions for tropical Sri Lankan soils. Water, 11: 1940. Go to original source...
  9. IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO.
  10. Kreiselmeier J., Chandrasekhar P., Weninger T., Schwen A., Julich S., Feger K.-H., Schwärzel K. (2020): Temporal variations of the hydraulic conductivity characteristic under conventional and conservation tillage. Geoderma, 362: 114127. Go to original source...
  11. Kröse B., van der Smagt P. (1996): An introduction to Neural Networks. 8th Ed. Amsterdam, University of Amsterdam.
  12. Lilly A., Nemes A., Rawls W.J., Pachepsky Y.A. (2008): Probabilistic approach to the identification of input variables to estimate hydraulic conductivity. Soil Science Society of America Journal, 72: 16-24. Go to original source...
  13. Matula S., Kozáková H. (1997): A simple pressure infiltrometer for determination of soil hydraulic properties by in situ infiltration measurements. Rostlinná výroba/Plant Production, 43: 405-413.
  14. Miháliková M., Matula S., Doleľal F. (2013): HYPRESCZ - Database of soil hydrophysical properties in the Czech Republic. Soil and Water Research, 8: 34-41. Go to original source...
  15. Minasny B., Mc Bratney A.B., Bristow K.Y. (1999): Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma, 93: 225-253. Go to original source...
  16. Moret D., Arrúe J.L. (2007): Characterizing soil water-conducting macro and mesoporosity as influenced by tillage using tension infiltrometry. Soil Science Society of America Journal, 71: 500-506. Go to original source...
  17. Nemes A., Schaap M.G., Wösten J.H.M. (2003): Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America Journal, 67: 1093-1102. Go to original source...
  18. Parr J.R., Bertrand A.R. (1960): Water infiltration into soils. Advances in Agronomy, 12: 311-363. Go to original source...
  19. Schaap M.G., Leij F.J., van Genuchten M.T. (2001): Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251: 163-176. Go to original source...
  20. Schwärzel K., Punzel J. (2007): Hood infiltrometer - A new type of tension infiltrometer. Soil Science Society of America Journal, 71: 1438-1447. Go to original source...
  21. Schwen A., Hernandez-Ramirez G., Lawrence-Smith E.J., Sinton S.M., Carrick S., Clothier B.E., Buchan G.D., Loiskandl W. (2011): Hydraulic properties and the water-conducting porosity as affected by subsurface compaction using tension infiltrometers. Soil Science Society of America Journal, 75: 822-831. Go to original source...
  22. Soil Survey Staff (2014): Keys to Soil Taxonomy. 12th Ed. Washington, DC, USDA-Natural Resources Conservation Service.
  23. ©tekauerová V., Mikulec V. (2009): Variability of saturated hydraulic conductivities in the agriculturally cultivated soils. Soil and Water Research, 4: S14-S21. Go to original source...
  24. Tomasella J., Pachepsky Ya., Crestana S., Rawls W.J. (2003): Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal, 67: 1085-1092. Go to original source...
  25. Tóth B., Weynants M., Nemes A., Makó A., Bilas G., Tóth G. (2015): New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, 66: 226-238. Go to original source... Go to PubMed...
  26. Tuffour H., Abubakari A., Agbeshie A., Khalid A., Tetteh E., Keshavarzi A., Bonsu M., Quansah C., Oppong J., Danso L. (2019): Pedotransfer functions for estimating saturated hydraulic conductivity of selected benchmark soils in Ghana. Asian Soil Research Journal, 2: 1-11. Go to original source...
  27. Willkommen S., Lange J., Ulrich U., Pfannerstill M., Fohrer N. (2021): Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil. Science of the Total Environment, 751: 141658. Go to original source... Go to PubMed...
  28. Wösten J.H.M., Lilly A., Nemes A., Le Bas C. (1998): Using existing soil data to derive hydraulic parameters for simulation models in environmental studies and in land use planning. Final Report on the European Union Funded Project, Report 156, Wageningen.
  29. Zhang Y., Schaap M.G. (2019): Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. Journal of Hydrology, 575: 1011-1030. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.