Soil & Water Res., 2023, 18(2):81-88 | DOI: 10.17221/101/2022-SWR

δ13C as a tool to determine the origin of soil organic carbon: Case study of a restored sloping orchardOriginal Paper

Mateja Muršec1*, Jean Leveque2
1 Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
2 UB/CNRS/UBFC/EPHE 6282 Biogéosciences, Université de Bourgogne, Dijon, France

The effect of drip irrigation on the origin and size fraction of soil organic carbon was studied in the soils of an apple orchard (Malus domestica Borkh.) on hilly (20%) terrain in northeastern Slovenia in three slope positions (upslope, midslope and downslope), comparing irrigated with non-irrigated soils. Physical fractionation of soil organic carbon was performed on three soil layers (0–0.05, 0.05–0.15 and 0.15–0.30 m) in three size fractions: fraction A (> 0.0002 m), fraction B (0.0002‒0.00005 m) and fraction C (< 0.00005 m). Fraction A was the richest in soil organic carbon (7.7%), but fraction C was the dominant fraction in the total soil volume (86‒92%), making it the largest source of soil organic carbon (73%). The δ13C signature was performed to determine the existence of two different types (origins) of soil organic carbon: fresh and sedimentary. Fresh organic carbon dominates in the A fraction, while sedimentary organic carbon dominates in the C fraction and may contribute to higher structural stability, besides higher carbonates in the finest fraction. Irrigation mainly contributes to the higher stock of soil organic carbon (predominantly fresh and less sedimentary) in the coarse A fraction (21.14 t/ha in irrigated and 14.17 t/ha in non-irrigated soils).

Keywords: CaCO3; carbon isotopes; drip irrigation; physical fractionation; soil organic matter

Received: July 13, 2022; Accepted: January 20, 2023; Prepublished online: February 22, 2023; Published: May 22, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Muršec M, Leveque J. δ13C as a tool to determine the origin of soil organic carbon: Case study of a restored sloping orchard. Soil & Water Res. 2023;18(2):81-88. doi: 10.17221/101/2022-SWR.
Download citation

References

  1. Baisden W.T., Amundson R., Cook A.C., Brenner D.L. (2002): Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochemical Cycles, 16: 1117-1117. Go to original source...
  2. Baldock J.A., Sanderman J., Macdonald L.M., Puccini A., Hawke B., Szarvas S., McGowan J. (2013): Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Research, 51: 561-576. Go to original source...
  3. Bartoli F., Philippy R., Doirisse M., Niquet S., Dubuit M. (1991): Structure and self-similarity in silt and sandy soils: The fractal approach. Journal of Soil Science, 42: 167-185. Go to original source...
  4. Chaplot V., Cooper M. (2015): Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243-244: 205-213. Go to original source...
  5. Chen P., Xu J., Zhang Z., Wang K., Li T., Wei Q., Li Y. (2022): Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biology and Biochemistry, 169: 108684. Go to original source...
  6. Christensen B.T. (1992): Physical fractionation of soil and organic matter in primary particle size and density separates. In: Stewart B.A. (ed.): Advances in Soil Science. Vol. 20, New York, Springer Verlag. Go to original source...
  7. Christensen B.T. (2001): Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52: 345-353. Go to original source...
  8. Cotrufo M.F., Soong J.L., Horton A.J., Campbell E.E., Haddix M.L., Wall D.H., Parton W.J. (2015): Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geosciece, 8: 776-779. Go to original source...
  9. Craig H. (1957): Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12: 133-149. Go to original source...
  10. Del Galdo I., Six J., Peressotti A., Cotrufo M.F. (2003): Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 9: 1204-1213. Go to original source...
  11. Di Giovanni C., Bertrand Ph., Campy M., Disnar J.R. (1997): Contribution de matière organique méso-cénozoïque dans un flux organique terrigène tardi et post- glaciaire (bassin de Chaillexon, Doubs, France). Bulletin de la Société géologique de France, 168: 553-559. Go to original source...
  12. Dondini M., Van Groenigen K.J., Del Galdo I., Jones M.B. (2009): Carbon sequestration under Miscanthus: A study of (13)C distribution in soil aggregates. Global Change Biology Bioenergy, 1: 321-330. Go to original source...
  13. Dou X., Cheng X., He P., Zhu P., Zhou W., Wang L. (2017): Dynamics of physically-separated soil organic carbon pools assessed from δ13C changes under 25 years of cropping systems. Soil Tillage Research, 174: 6-13. Go to original source...
  14. FAO (2006): World Reference Base for Soil Resources. Report No. 103, Rome, ISSS-ISRIC-FAO.
  15. Graz Y., Di-Giovanni C., Copard Y., Laggoun-Défarge F., Boussafir M, Lallier-Vergès E., Baillif P., Perdereau L., Simonneau A. (2010): Quantitative palynofacies analysis as a new tool for study transfers of fossil organic matter in recent terrestrial environments. International Journal of Coal Geology. 84: 49-62. Go to original source...
  16. Gunina A., Kuzyakov Y. (2014): Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry 71: 95-104. Go to original source...
  17. Jiang R., Gunina A., Qu D., Kuzyakov Y., Yu Y., Hatano R., Frimpong K.A., Li M. (2019): Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 177: 49-56. Go to original source...
  18. Kaiser K., Guggenberger G. (2003): Mineral surfaces and soil organic matter. European Journal of Soil Science, 54: 219-236. Go to original source...
  19. Kemper W.D., Rosenau R.C. (1986): Aggregate stability and size distribution. In: Klute A. (ed.) Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Agronomy Monography No. 9. Madison, American Society of Agronomy and Soil Science Society of America: 425-442. Go to original source...
  20. Kochsiek A.E., Knops J.M., Walters D.T., Arkebauer T.J. (2009): Impact of managment on decomposition and the litter-carbon balance in irrigated and rainfed no-till agricultural systems. Agricultural and Forest Meteorology, 149: 1983-1993. Go to original source...
  21. Liu Y., Hu C., Hu W., Wang L., Li Z., Pan J., Chen F. (2018): Stable isotope fractionation provides information on carbon dynamics in soil aggregates subjected to different long-term fertilization practices. Soil Tillage Research, 177: 54-60. Go to original source...
  22. Muršec M., Leveque J., Chaussod R., Curmi P. (2018): The impact of drip irrigation on soil quality in sloping orchards developed on marl - A case study. Plant, Soil and Environment, 64: 20-25. Go to original source...
  23. Penman J., Gytarsky M., Hiraishi T., Krug T., Kruger D., Pipatti R., Buendia L., Miwa K., Ngara T., Tanabe K., Wagner F. (eds.) (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry. Intergovernmental Panel on Climate Change. Hayama, IPCC/OECD/IEA/IGES. Available at https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf
  24. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M.F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L.M., Soong J, Trigalet S., Vermeire M.L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R. (2018): Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils - A comprehensive method comparison. Soil Biology & Biochemistry, 125: 10-26. Go to original source...
  25. Sebag D., Di Giovanni C., Ogier S., Mesnage V., Laggoun-Défarge F., Durand A. (2006): Inventory of sedimentary organic matter in modern wetland (Marais Vernier, Normandy, France) as source-indicative tools to study Holocene alluvial deposits (Lower Seine Valley, France). International Journal of Coal Geology, 67: 1-16. Go to original source...
  26. Six J., Callewaert P., Lenders S., De Gryze S., Morris S.J., Gregorich E.G., Paul E.A., Paustian K. (2002): Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66: 1981-1987. Go to original source...
  27. Sollins P., Kramer M.G., Swanston C., Lajtha K., Filley T., Aufdenkampe A.K., Wagai R., Bowden R.D. (2009): Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96: 209-231. Go to original source...
  28. Statgraphics (2005): Statgraphics Centurion XV. User Manual. Herndon, StatPoint Inc.
  29. Volk M., Bassin S., Lehmann M.F., Johnson M.G., Andersen C.P. (2018): 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition. Soil Biology and Biochemistry, 125: 178-184. Go to original source... Go to PubMed...
  30. von Lützow M., Kögel-Knabner I., Ekschmitt K., Flessa H., Guggenberger G., Matzner E., Marschner B. (2007): SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 39: 2183-2207. Go to original source...
  31. Wagai R., Mayer L.M., Kitayama K., Knicker H. (2008): Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach. Geoderma, 147: 23-33. Go to original source...
  32. Wang K.B., Deng L., Di D.R., He X.H., Shi W.Y. (2020): Tracking soil carbon processes in two temperate forests at different successional stages using stable and radioactive carbon isotopes. Agriculture, Ecosystems and Environment, 304: 107143. Go to original source...
  33. Wu L., Wood Y., Jiang P., Li L., Pan G., Lu J., Chang A.C., Enloe H.A. (2008): Carbon sequestration and dynamics of two irrigated agricultural soils in California. Soil Science Society of America, 72: 808-814. Go to original source...
  34. Xiao J., Zhao Y., Wang X., Hao Z., Wang K., Jiang S., Liu H., Zhou X. (2022): Effect of recovery models on organic carbon pathways: A method using 13C natural abundance. Agriculture, Ecosystems and Environment, 328: 107851. Go to original source...
  35. Zhang K., Dang H., Zhang Q., Cheng X. (2015): Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Global Change Biology, 21: 2762-2772. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.