Soil & Water Res., 2023, 18(2):102-115 | DOI: 10.17221/91/2022-SWR
Detection of high erosion risk areas and their incorporation into environmental impact assessmentOriginal Paper
- Department of Mechanical Engineering, University of La Rioja, Logroño, La Rioja, Spain
Life Cycle Assessment (LCA) is normally used independently of the physical and temporal location of the product, process or service under analysis. This makes LCA results more easily comparable and globally accepted. At the same time, it has drawbacks though, e.g. land use will have the same impact regardless of location. However, the use of certain terrains in high erosion risk areas as compared to others in low erosion risk areas will have a different impact on the ecosystem. The availability of airborne Light Detection and Ranging (LiDAR) data (ALS) allows a quick and accurate morphogeometric analysis of any terrain. For this reason, this article offers a methodology, based on Revised Universal Soil Loss Equation (RUSLE) method and airborne LiDAR data, for the straightforward detection of zones with high vulnerability to erosion problems. Based on these local erosion risk data, a method is developed to assess the environmental impact of land use, based on its location. In this way, the LCA methodology is incorporated to gather local data, dependent on the specific location of the activity under analysis. The methodology developed has been applied, as a case study, to a specific municipality in the high mountains of the Autonomous Community of La Rioja (Spain).
Keywords: environmental impact; land use; LiDAR; life cycle assessment; soil erosion
Received: June 21, 2022; Accepted: April 17, 2023; Prepublished online: May 2, 2023; Published: May 22, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Adhikari K., Hartemink A. E. (2016): Linking soils to ecosystem services - A global review. Geoderma, 262: 101-111.
Go to original source...
- Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Santhi C., Harmel R.D., Van Griensven A., Van Liew M.W. (2012): SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55: 1491-1508.
Go to original source...
- Brentrup F., Küsters J., Lammel J., Kuhlmann H. (2002): Life Cycle Impact assessment of land use based on the hemeroby concept. The International Journal of Life Cycle Assessment, 7: 339-348.
Go to original source...
- Brooks A., Spencer J., Borombovits D., Pietsch T., Olley J. (2014): Measured hillslope erosion rates in the wet-dry tropics of Cape York, northern Australia: Part 2, RUSLE-based modeling significantly over-predicts hillslope sediment production. Catena, 122: 1-17.
Go to original source...
- Çomakli E., Turgut B. (2021): Determining the effects of the forest stand age on the soil quality index in afforested areas: A case study in the Palandöken mountains. Soil and Water Research, 16: 237-249.
Go to original source...
- Desmet P.J.J., Govers G. (1996): A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51: 427-433.
Go to original source...
- Ðomlija P., Gazibara S.B., Arbanas ®., Arbanas S.M. (2019): Identification and mapping of soil erosion processes using the visual interpretation of Lidar imagery. ISPRS International Journal of Geo-Information, 8: 438.
Go to original source...
- Fan X., Fan H., Dong S. (2022): The coupling of hillslope- and gully-erosion increases their controlling efforts: A case study in Liaoning Province, China. Soil and Water Research, 17: 123-137.
Go to original source...
- Finnveden G., Hauschild M.Z., Ekvall T., Guinée J., Heijungs R., Hellweg S., Koehler A., Pennington D., Suh S. (2009): Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91: 1-21.
Go to original source...
Go to PubMed...
- García-Gutiérrez J., Martínez-Álvarez F., Riquelme J.C. (2010): Using remote data mining on LIDAR and imagery fusion data to develop land cover maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6096 LNAI(PART 1), 378-387. https://doi.org/10.1007/978-3-642-13022-9_38/COVER
Go to original source...
- Gavrilovic S. (1962): A method for estimating the average annual quantity of sediments according to the potency of erosion. Bulletin of the Faculty of Forestry, 26: 151-168.
- Geology and Mining Institute of Spain (1980): Geological Map of Spain - Sheet 21. Madrid, IGME: 1-27.
- Guinée M., Heijungs R., Huppes G., Kleijn R., Koning A. de, Oers L. van, Wegener Sleeswijk A., Suh S., Udo de Haes H.A., Bruijn H. de, Duin R. van, Huijbregts M.A.J., Gorrée J.B. (2002): Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background. Dordrecht, Kluwer Academic Publishers.
- Hengl T., Mendes de Jesus J., Heuvelink G.B. M., Ruiperez Gonzalez M., Kilibarda M., Blagotiæ A., Shangguan W., Wright M.N., Geng X., Bauer-Marschallinger B. (2017): SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12: e0169748.
Go to original source...
Go to PubMed...
- IDERioja (2016): LiDAR flight of the Autonomous Community of La Rioja 2016. Available at https://www.iderioja.larioja.org/cartografia/index.php?map=RIOJA_C04&&⟨=es (assecced Apr 15, 2022).
- ISRIC (2022): SoilGrids250 m: Global Gridded Soil Information. Available at https://data.isric.org/geonetwork/srv/eng/catalog.search#/home (accessed March 5, 2022).
- Kabelka D., Kincl D., Vopravil J., Vráblík P. (2021): Impact of cover crops in inter-rows of hop gardens on reducing soil loss due to water erosion. Plant, Soil and Environment, 67: 230-235.
Go to original source...
- Koellner T., Baan L., Beck T., Brandão M., Civit B., Margni M., Canals L. M., Saad R., Souza D. M., Müller-Wenk R. (2013): UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. International Journal of Life Cycle Assessment, 18: 1188-1202.
Go to original source...
- Kouli M., Soupios P., Vallianatos F. (2009): Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57: 483-497.
Go to original source...
- Laflen J.M., Lane L.J., Foster G.R. (1991): WEPP: A new generation of erosion prediction technology. Journal of Soil and Water Conservation, 46: 34-38.
Go to original source...
- Lee M.H., Hsu I.P. (2021): Estimation of annual mean rainfall erosivity based on hourly rainfall data in a tropical region. Soil and Water Research, 16: 74-84.
Go to original source...
- Llantoy N., Zsembinszki G., Palomba V., Frazzica A., Dallapiccola M., Trentin F., Cabeza L. F. (2021): Life cycle assessment of an innovative hybrid energy storage system for residential buildings in continental climates. Applied Sciences (Switzerland), 11: 3820.
Go to original source...
- Lohani B., Mishra R.K. (2009): Las and lasutility. GIM International, 23: 13-15.
- McCool D.K., Foster G.R., Mutchler C.K., Meyer L.D. (1989): Revised slope length factor for the Universal Soil Loss Equation. Transactions of the ASAE, 32: 1571-1576.
Go to original source...
- Ministry of Agriculture Fishing and Food (1988): Aggressiveness of Rain in Spain. Madrid, ICONA: 1-39. (in Spanish)
- Ministry of Agriculture Fishing and Food (2008): National Action Programme against Desertification. Madrid, CCD: 1-36. (in Spanish)
- Ministry of Agriculture Fishing and Food (2022): Spatial Data Infrastructure, and Catalog of Inspire Water Visualization Services. Available at https://www.miteco.gob.es/es/cartografia-y-sig/ide/directorio_datos_servicios/agua/wms-inspire-agua.aspx (accessed Apr 20, 2022). (in Spanish)
- Mohammed S., Abdo H.G., Szabo S., Pham Q.B., Holb I.J., Linh N.T.T., Anh D.T., Alsafadi K., Mokhtar A., Kbibo I. (2020): Estimating human impacts on soil erosion considering different hillslope inclinations and land uses in the coastal region of Syria. Water, 12: 2786.
Go to original source...
- Morgan R.P.C., Quinton J.N., Smith R.E., Govers G., Poesen J.W.A., Auerswald K., Chisci G., Torri D., Styczen M.E. (1998): The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23: 527-544.
Go to original source...
- Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. (2000): Erosion Soil and Water Assessment Tool. Theoretical Documentation. Version 2009. Temple, Texas Agricultural Experiment Station. Available at https://swat.tamu.edu/media/99192/swat2009-theory.pdf
- Núñez M., Civit B., Muñoz P., Arena A.P., Rieradevall J., Antón A. (2010): Assessing potential desertification environmental impact in life cycle assessment. Part 1: Methodological aspects. The International Journal of Life Cycle Assessment, 15: 67-78.
Go to original source...
- Oorthuis R., Vaunat J., Hürlimann M., Lloret A., Moya J., Puig-Polo C., Fraccica A. (2020): Slope orientation and vegetation effects on soil thermo-hydraulic behavior. An experimental study. Sustainability, 13: 14.
Go to original source...
- Pavan A.L.R., Ometto A.R. (2018): Ecosystem Services in Life Cycle Assessment: A novel conceptual framework for soil. Science of the Total Environment, 643: 1337-1347.
Go to original source...
Go to PubMed...
- Pimentel D., Kounang N. (1998): Ecology of soil erosion in ecosystems. Ecosystems, 1: 416-426.
Go to original source...
- Plescan C., Barta M., Maxineasa S.G., Pleșcan E.L. (2022): Life cycle assessment of concrete pavement rehabilitation: A Romanian case study. Applied Sciences (Switzerland), 12: 1769.
Go to original source...
- Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.P., Suh S., Weidema B.P., Pennington D.W. (2004): Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30: 701-720.
Go to original source...
Go to PubMed...
- Renard K.G. (1992): Computerized calculations for conservation planning. Agricultural Engineering, 73: 16-17.
- Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. (1996): Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703, Washington D.C., USDA.
- Rueda E.B., Cerdà A., González B.S., Viqueira F.D.-F., Delgado J.L.R., Varela M.E., Alleres M.R. (2010): Methods for Studying Soil Erodibility: Their Application in Soils Affected by Forest Fires. Update on Methods and Techniques for Studying Soils Affected by Forest Fires. Valencia, Cátedra Divulgación de la Ciencia, Universidad de Valencia: 85-107.
- Scuderi A., Cammarata M., Branca F., Timpanaro G. (2021): Agricultural production trends towards carbon neutrality in response to the EU 2030 Green deal: Economic and environmental analysis in horticulture. Agricultural Economics (Czech Republic), 67: 435-444.
Go to original source...
- Shellberg J.G. (2021): Agricultural development risks increasing gully erosion and cumulative sediment yields from headwater streams in Great Barrier Reef catchments. Land Degradation & Development, 32: 1555-1569.
Go to original source...
- Sultan Mahmud M., Zahid A., He L., Choi D., Krawczyk G., Zhu H. (2021): LiDAR-sensed tree canopy correction in uneven terrain conditions using a sensor fusion approach for precision sprayers. Computers and Electronics in Agriculture, 191: 106565.
Go to original source...
- Van der Knijff J.M., Jones R.J.A., Montanarella L. (2000): Soil Erosion Risk: Assessment in Europe. European Soil Bureau, European Commission Brussels.
- Wischmeier W.H., Smith D.D. (1978): Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Agricultural Handbook No. 537, Science and Education Administration, USDA.
- Wischmeier W.H., Smith D.D., Uhland R.E. (1958): Evaluation of factors in the soil loss equation. Agricultural Engineering, 39: 458-462.
Go to original source...
- Yang M., Yang Q., Zhang K., Wang C., Pang G., Li Y. (2023): Effects of soil rock fragment content on the USLE-K factor estimating and its influencing factors. International Soil and Water Conservation Research, 11: 263-275.
Go to original source...
- Zamagni A., Buttol P., Buonamici R., Masoni P., Guinée J.B., Huppes G., Heijungs R., van der Voet E., Ekvall T., Rydberg T. (2009): D20 Blue Paper on Life Cycle Sustainability Analysis. Deliverable 20 of Work Package 7 of the CALCAS Project. Project No. 037075 2009, Leiden University.
- Zhou P., Luukkanen O., Tokola T., Nieminen J. (2008): Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75: 319-325.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.