Soil & Water Res., 2023, 18(4):246-268 | DOI: 10.17221/60/2023-SWR

Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchmentOriginal Paper

Tailin Li ORCID...1*, Massimiliano Schiavo ORCID...2, David Zumr ORCID...1
1 Department of Landscape Water Conservation, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic
2 Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano, Italy

A precise measurement of evapotranspiration (ET) and soil water storage (SWS) is necessary for crop management and understanding hydrological processes in agricultural catchments. In this study, we extracted the vegetative indices (VIs, including normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI)) from satellite images of the Nuèice catchment. We found a consistent seasonal pattern of VIs across the catchment with higher values and variation ranges during spring and summer and lower values and variation ranges during autumn and winter. Spatial variation of VIs also followed a seasonal trend, decreasing during crop growth and increasing after crop harvesting. Seasonal correlations were observed between monthly average ET and SWS with VIs throughout one crop season, which can be expressed mathematically as exponential functions. We propose that VIs can be used as a surrogate measure for ET and SWS in catchments with poor monitoring capabilities. Further studies are required to investigate the spatial distribution of ET and SWS throughout the watershed and their relationship with VIs. Furthermore, our research emphasises the importance of subsurface recharge in the water balance of the investigated fields. It suggests that subsurface flow may be influenced by potential gradients of the water table, driving its seasonal behaviour in response to bedrock morphology.

Keywords: catchment hydrology; remote sensing; soil moisture; water balance

Received: June 21, 2023; Revised: August 23, 2023; Accepted: September 5, 2023; Prepublished online: October 3, 2023; Published: October 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Li T, Schiavo M, Zumr D. Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment. Soil & Water Res. 2023;18(4):246-268. doi: 10.17221/60/2023-SWR.
Download citation

References

  1. Abbasi N., Nouri H., Didan K., Barreto-Muñoz A., Chavoshi Borujeni S., Salemi H., Opp C., Siebert S., Nagler P. (2021): Estimating actual evapotranspiration over croplands using Vegetation Index methods and dynamic harvested area. Remote Sensing, 13: 5167. Go to original source...
  2. Abowarda A.S., Bai L., Zhang C., Di Long, Li X., Huang Q., Sun Z. (2021): Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sensing of Environment, 255: 112301. Go to original source...
  3. Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56. Rome, FAO.
  4. Allen R.G., Pereira L.S., Howell T.A., Jensen M.E. (2011a): Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98: 899-920. Go to original source...
  5. Allen R.G., Pereira L.S., Howell T.A., Jensen M.E. (2011b): Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management, 98: 921-929. Go to original source...
  6. Angus D.E., Watts P.J. (1984): Evapotranspiration - How good is the Bowen ratio method? Agricultural Water Management, 8: 133-150. Go to original source...
  7. Aragon B., Houborg R., Tu K., Fisher J.B., McCabe M. (2018): CubeSats Enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sensing, 10: 1867. Go to original source...
  8. Aragon B., Ziliani M.G., Houborg R., Franz T.E., McCabe M.F. (2021): CubeSats deliver new insights into agricultural water use at daily and 3 m resolutions. Scientific Reports, 11: 1-12. Go to original source... Go to PubMed...
  9. Bajocco S., Ginaldi F., Savian F., Morelli D., Scaglione M., Fanchini D., Raparelli E., Bregaglio S.U.M. (2022): On the use of NDVI to estimate LAI in field crops: Implementing a conversion equation library. Remote Sensing, 14: 3554. Go to original source...
  10. Baldocchi D.D. (2003): Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9: 479-492. Go to original source...
  11. Benninga H.J.F., van der Velde R., Su Z. (2022): Soil moisture content retrieval over meadows from Sentinel-1 and Sentinel-2 data using physically based scattering models. Remote Sensing of Environment, 280: 113191. Go to original source...
  12. Biswas A. (2019): Joint multifractal analysis for three variables: Characterizing the effect of topography and soil texture on soil water storage. Geoderma, 334: 15-23. Go to original source...
  13. Bogena H.R., Herbst M., Huisman J.A., Rosenbaum U., Weuthen A., Vereecken H. (2010): Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9: 1002-1013. Go to original source...
  14. Bowen I.S. (1926): The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27: 779-787. Go to original source...
  15. Cao R., Jia X., Huang L., Zhu Y., Wu L., Shao M. (2018): Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Scientific Reports, 8: 12346. Go to original source... Go to PubMed...
  16. Chanda S., Kanke Y., Dalen M., Hoy J., Tubana B. (2018): Coefficient of variation from vegetation index for sugarcane population and stalk evaluation. Agrosystems, Geosciences & Environment, 1: 1-9. Go to original source...
  17. Cheng M., Jiao X., Liu Y., Shao M., Yu X., Bai Y.,Wang Z., Wang S., Tuohuti N., Liu S., Shi L., Yin D., Huang X., Nie C., Jin X. (2022a): Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, 264: 107530. Go to original source...
  18. Cheng M., Li B., Jiao X., Huang X., Fan H., Lin R., Liu K. (2022b): Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China. Agricultural Water Management, 260: 107298. Go to original source...
  19. Cheng Y., Vrieling A., Fava F., Meroni M., Marshall M., Gachoki S. (2020): Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sensing of Environment, 248: 112004. Go to original source...
  20. Cholpankulov E.D., Inchenkova O.P., Paredes P., Pereira L.S. (2008): Cotton irrigation scheduling in central Asia: Model calibration and validation with consideration of groundwater contribution. Irrigation and Drainage, 57: 516-532. Go to original source...
  21. Crow W.T., Kustas W.P., Prueger J.H. (2008): Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sensing of Environment, 112: 1268-1281. Go to original source...
  22. Devitt D.A., Sala A., Smith S.D., Cleverly J., Shaulis L.K., Hammett R. (1998): Bowen ratio estimates of evapotranspiration for Tamarix ramosissima stands on the Virgin River in southern Nevada. Water Resources Research, 34: 2407-2414. Go to original source...
  23. Estes L.D., Ye S., Song L., Luo B., Eastman J.R., Meng Z., Zhang Q., McRitchie D., Debats S.R., Muhando J., Amukoa A.H., Kaloo B.W., Makuru J., Mbatia B.K., Muasa I.M., Mucha J., Mugami A.M., Mugami J.M., Muinde F.W., Mwawaza F.M., Ochieng J., Oduol C.J., Oduor P., Wanjiku T., Wanyoike J.G., Avery R.B., Caylor K.K. (2022): High resolution, annual maps of field boundaries for smallholder-dominated croplands at national scales. Frontiers in Artificial Intelligence, 4: 164. Go to original source... Go to PubMed...
  24. Famiglietti J.S., Rudnicki J.W., Rodell M. (1998): Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210: 259-281. Go to original source...
  25. Fan Y., Miguez-Macho G., Jobbágy E.G., Jackson R.B., Otero-Casal C. (2017): Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114: 10572-10577. Go to original source... Go to PubMed...
  26. Fisher J.B., Tu K.P., Baldocchi D.D. (2008): Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112: 901-919. Go to original source...
  27. Gao X. (2000): Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74: 609-620. Go to original source...
  28. Gitelson A.A., Kaufman Y.J., Merzlyak M.N. (1996): Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58: 289-298. Go to original source...
  29. Glenn E.P., Nagler P.L., Huete A.R. (2010): Vegetation index methods for estimating evapotranspiration by remote sensing. Surveys in Geophysics, 31: 531-555. Go to original source...
  30. Granier A. (1987): Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3: 309-320. Go to original source... Go to PubMed...
  31. Hanel M., Mrkvièková M., Máca P., Vizina A., Pech P. (2013): Evaluation of simple statistical downscaling methods for monthly regional climate model simulations with respect to the estimated changes in runoff in the Czech Republic. Water Resources Management, 27: 5261-5279. Go to original source...
  32. Hatfield J.L., Prueger J.H. (2010): Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2: 562-578. Go to original source...
  33. He M., Kimball J.S., Yi Y., Running S.W., Guan K., Moreno A., Wu X., Maneta M. (2019): Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework. Remote Sensing of Environment, 230: 111201. Go to original source...
  34. Hébrard O., Voltz M., Andrieux P., Moussa R. (2006): Spatio-temporal distribution of soil surface moisture in a heterogeneously farmed Mediterranean catchment. Journal of Hydrology, 329: 110-121. Go to original source...
  35. Houborg R., McCabe M.F. (2018): Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sensing, 10: 890. Go to original source...
  36. Howell T.A., Schneider A.D., Dusek D.A., Marek T.H., Steiner J.L. (1995): Calibration and scale performance of Bushland weighing lysimeters. Transactions of the ASAE, 38: 1019-1024. Go to original source...
  37. Huete A.R. (1988): A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309. Go to original source...
  38. Huete A., Didan K., Miura T., Rodriguez E., Gao X., Ferreira L. (2002): Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83: 195-213. Go to original source...
  39. Irmak S., Skaggs K.E., Chatterjee S. (2014): A review of the Bowen ratio surface energy balance method for quantifying evapotranspiration and other energy fluxes. Transactions of the ASABE, 57: 1657-1674. Go to original source...
  40. Jensen M.E., Wright J.L. (1978): The role of evapotranspiration models in irrigation scheduling. Transactions of the ASAE, 21: 82-87. Go to original source...
  41. Jeøábek J., Zumr D., Dostál T. (2017): Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil and Tillage Research, 174: 231-240. Go to original source...
  42. Jeøábek J., Zumr D., Laburda T., Krása J., Dostál T. (2022): Soil surface connectivity of tilled soil with wheel tracks and its development under simulated rainfall. Journal of Hydrology, 613: 128322. Go to original source...
  43. Kendall M.G., Stuart A. (1969): The Advanced Theory of Statistics. 3rd Ed. Griffin, London, High Wycombe. Go to original source...
  44. Kimm H., Guan K., Jiang C., Peng B., Gentry L.F., Wilkin S.C., Wang S., Cai Y., Bernacchi C. J., Peng J., Luo Y. (2020): Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sensing of Environment, 239: 111615. Go to original source...
  45. Kokhan S., Vostokov A. (2020): Using Vegetative indices to quantify agricultural crop characteristics. Journal of Ecological Engineering, 21: 120-127. Go to original source...
  46. Li T., Jeøábek J., Noreika N., Dostál T., Zumr D. (2021): An overview of hydrometeorological datasets from a small agricultural catchment (Nuèice) in the Czech Republic. Hydrological Processes, 35: e14042. Go to original source...
  47. Li W., Migliavacca M., Forkel M., Denissen J.M.C., Reichstein M., Yang H., Duveiller G., Weber U., Orth R. (2022): Widespread increasing vegetation sensitivity to soil moisture. Nature Communications, 13: 3959. Go to original source... Go to PubMed...
  48. Marek T., Piccinni G., Schneider A., Howell T., Jett M., Dusek D. (2006): Weighing lysimeters for the determination of crop water requirements and crop coefficients. Applied Engineering in Agriculture, 22: 851-856. Go to original source...
  49. Martin K.L., Girma K., Freeman K.W., Teal R.K., Tubaña B., Arnall D.B., Chung B., Walsk O., Solie J.B., Stone M.L., Raun W.R. (2007): Expression of variability in corn as influenced by growth stage using optical sensor measurements. Agronomy Journal, 99: 384-389. Go to original source...
  50. Martínez B., Gilabert M.A. (2009): Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 113: 1823-1842. Go to original source...
  51. McCabe M.F., Rodell M., Alsdorf D.E., Miralles D.G., Uijlenhoet R., Wagner W., Lucieer A., Houborg R., Verhoest N.E.C., Franz T.E., Shi J., Gao H., Wood E.F. (2017): The future of earth observation in hydrology. Hydrology and Earth System Sciences, 21: 3879-3914. Go to original source... Go to PubMed...
  52. Meijninger W.M.L., Hartogensis O.K., Kohsiek W., Hoedjes J.C.B., Zuubier R.M., De Bruin H.A.R. (2002): Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorology, 105: 37-62. Go to original source...
  53. Nagler P.L., Cleverly J., Glenn E., Lampkin D., Huete A., Wan Z. (2005): Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment, 94: 17-30. Go to original source...
  54. Nagler P., Glenn E., Nguyen U., Scott R., Doody T. (2013): Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sensing, 5: 3849-3871. Go to original source...
  55. Nagler P.L., Barreto-Muñoz A., Chavoshi Borujeni S., Jarchow C.J., Gómez-Sapiens M.M., Nouri H., Herrmann S.M., Didan K. (2020): Ecohydrological responses to surface flow across borders: Two decades of changes in vegetation greenness and water use in the riparian corridor of the Colorado River delta. Hydrological Processes, 34: 4851-4883. Go to original source...
  56. Nash J.E., Sutcliffe J.V. (1970): River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10: 282-290. Go to original source...
  57. Nguyen T.T., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Nguyen C.T., Zhang J., Liang S., Bui X.T., Hoang N.B. (2022): A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Science of the Total Environment, 833: 155066. Go to original source... Go to PubMed...
  58. Nguy-Robertson A.L., Peng Y., Gitelson A.A., Arkebauer T.J., Pimstein A., Herrmann I., Karnieli A., Rundquist D.C., Bonfil D.J. (2014): Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agricultural and Forest Meteorology, 192-193: 140-148. Go to original source...
  59. Noreika N., Li T., Zumr D., Krasa J., Dostal T., Srinivasan R. (2020): Farm-scale biofuel crop adoption and its effects on in-basin water balance. Sustainability (Switzerland), 12: 10596. Go to original source...
  60. Noreika N., Winterová J., Li T., Krása J., Dostál T. (2021): The small water cycle in the Czech landscape: How has it been affected by land management changes over time? Sustainability (Switzerland), 13: 13757. Go to original source...
  61. Noreika N., Li T., Winterova J., Krasa J., Dostal T. (2022): The effects of agricultural conservation practices on the small water cycle: From the farm-to the management-scale. Land, 11: 683. Go to original source...
  62. Park J., Baik J., Choi M. (2017): Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia. Catena, 156: 305-314. Go to original source...
  63. Priestley C.H.B., Taylor R.J. (1972): On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100: 81-92. Go to original source...
  64. Robinson D.A., Jones S.B., Wraith J.M., Or D., Friedman S.P. (2003): A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2: 444-475. Go to original source...
  65. Rong L., Duan X., Feng D., Zhang G. (2017): Soil moisture variation in a farmed dry-hot valley catchment evaluated by a redundancy analysis approach. Water, 9: 92. Go to original source...
  66. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. (1973): Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication, 351: 309.
  67. Schiavo M. (2022): Probabilistic delineation of subsurface connected pathways in alluvial aquifers under geological uncertainty. Journal of Hydrology, 615: 128674. Go to original source...
  68. Schiavo M., Riva M., Guadagnini L., Zehe E., Guadagnini A. (2022): Probabilistic identification of Preferential Groundwater Networks. Journal of Hydrology, 610: 127906. Go to original source...
  69. Shafian S., Rajan N., Schnell R., Bagavathiannan M., Vala-sek J., Shi Y., Olsenholler J. (2018): Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE, 13: e0196605. Go to original source... Go to PubMed...
  70. Sharma R., Bhandari R. (2015): Skewness, kurtosis and Newton's inequality. Rocky Mountain Journal of Mathematics, 45: 1639-1643. Go to original source...
  71. Stocker B.D., Tumber-Dávila S.J., Konings A.G., Anderson M.C., Hain C., Jackson R.B. (2023): Global patterns of water storage in the rooting zones of vegetation. Nature Geoscience, 16: 250-256. Go to original source... Go to PubMed...
  72. Tenreiro T.R., Jeøábek J., Gómez J.A., Zumr D., Martínez G., García-Vila M., Fereres E. (2022): Simulating water lateral inflow and its contribution to spatial variations of rainfed wheat yields. European Journal of Agronomy, 137: 126515. Go to original source...
  73. Topp G.C., Davis J.L., Annan A.P. (1980): Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16: 574-582. Go to original source...
  74. Trautmann T., Koirala S., Carvalhais N., Güntner A., Jung M. (2022): The importance of vegetation in understanding terrestrial water storage variations. Hydrology and Earth System Sciences, 26: 1089-1109. Go to original source...
  75. Tucker C.J. (1979): Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8: 127-150. Go to original source...
  76. Ukasha M., Ramirez J.A., Niemann J.D. (2022): Temporal variations of NDVI and LAI and interactions with hydroclimatic variables in a large and agro-ecologically diverse region. Journal of Geophysical Research: Biogeosciences, 127: e2021JG006395. Go to original source...
  77. Wang K., Li Z., Cribb M. (2006): Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter. Remote Sensing of Environment, 102: 293-305. Go to original source...
  78. Wang K., Wang P., Li Z., Cribb M., Sparrow M. (2007): A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research, 112: D15107. Go to original source...
  79. Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C., Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B., Kowalski A., Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R., Verma S. (2002): Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113: 223-243. Go to original source...
  80. Wohlfahrt G., Tasser E. (2015): A mobile system for quantifying the spatial variability of the surface energy balance: Design and application. International Journal of Biometeorology, 59: 617-627. Go to original source... Go to PubMed...
  81. Wyatt B.M., Ochsner T.E., Zou C.B. (2021): Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agricultural and Forest Meteorology, 307: 108471. Go to original source...
  82. Yuan W., Liu S., Yu G., Bonnefond J.-M., Chen J., Davis K., Desai A.R., Goldstein A.H., Gianelle D., Rossi F., Suyker A.E., Verma S.B. (2010): Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 114: 1416-1431. Go to original source...
  83. Zhang Y., Wegehenkel M. (2006): Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sensing of Environment, 104: 393-408. Go to original source...
  84. Zhang Y., Wang K., Wang J., Liu C., Shangguan Z. (2021): Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Scientific Reports, 11: 9692. Go to original source... Go to PubMed...
  85. Ziliani M.G., Altaf M.U., Aragon B., Houburg R., Franz T.E., Lu Y., Sheffield J., Hoteit I., McCabe M.F. (2022): Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model. Agricultural and Forest Meteorology, 313: 108736. Go to original source...
  86. Zumr D., Dostál T., Devátý J. (2015): Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment. Journal of Hydrology and Hydromechanics, 63: 246-254. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.