Soil & Water Res., 2025, 20(1):52-68 | DOI: 10.17221/119/2024-SWR

Parameters of labile organic carbon as the indicators of the stability of soil organic matter under different land useOriginal Paper

Erika Balontayová ORCID...1*, Juraj Hre¹ko ORCID...2, Viera Petlu¹ová ORCID...2, Peter Petlu¹ ORCID...2, Bo¿ena Dêbska ORCID...3, Tomá¹ Lo¹ák ORCID...4
1 Institute Agrochemistry and Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
2 Department of Ecology and Environmental Science, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
3 Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
4 Department of Environmental Science and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, Brno, Czech Republic

The labile fractions of organic carbon (OC), which are a reflection of the properties of soil and its use, appear to be suitable parameters for their use as indicators. The aim of this study was to determine the reliable and relatively simple indicators for detecting the chemical and physical stabilizations of OC, which would respond sensitively to land use. The study includes forest ecosystem (FE) and agroecosystem (AE) with different tillage intensities (reduced tillage, RT and conventional tillage, CT) on real farms. Parameters of the labile C and N were tested. For a depth of < 0.1 m in the FE, the hot water extractable organic carbon (HWEOC) for chemical stabilization and labile nitrogen (NL) for physical stabilization appear as the most suitable indicators. Higher values of HWEOC indicate the OC stabilization by decreasing decomposition, pH or by increasing carbonates, recalcitrant fractions, and higher values of NL by OC incorporation into the silt fraction and larger macro-aggregates. In the AE with RT, these are the HWEOC for chemical stabilization and carbon pool index (CPI) or index of carbon lability (LIC) for physical stabilization. Higher values of CPI and LIC indicate the stabilization by the formation of size-optimal dry-sieved (DSA; 1–3 mm) and wet-sieved (WSA; 1–2 mm) soil aggregates. In the AE with CT, it was the NL. Its higher values point to the stabilization through the carbonates, alkaline cations, size-fraction of > 0.01 mm and the formation of DSA (1–3 mm). For a depth of < 0.3 m in the AE, these are the CL (for RT), higher value of which points to the stabilization by clay and alkaline cations, and HWEOC (for CT), higher value of which indicates the stabilization in the conditions of the soil acidification.

Keywords: agroecosystem; forest; indicators; labile carbon; stabilization, tillage

Received: October 1, 2024; Revised: November 20, 2024; Accepted: November 28, 2024; Prepublished online: January 3, 2025; Published: January 13, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Balontayová E, Hre¹ko J, Petlu¹ová V, Petlu¹ P, Dêbska B, Lo¹ák T. Parameters of labile organic carbon as the indicators of the stability of soil organic matter under different land use. Soil & Water Res. 2025;20(1):52-68. doi: 10.17221/119/2024-SWR.
Download citation

References

  1. Artemyeva Z., Danchenko N., Kolyagin Y., Zazovskaya E., Kogut B. (2022): Variations in the chemical structure and carbon-13 natural abundance in water-stable macro- and microaggregates in Haplic Chernozem under the contrasting land use variants. Environmental Research, 213: 113701. Go to original source... Go to PubMed...
  2. Arthur E., Tuller M., Norgaard T., Moldrup P., Chen Ch., Rehman H.U., Weber P.L., Knadel M., Wollesen de Jonge L. (2023): Contribution of organic carbon to the total specific surface area of soils with varying clay mineralogy. Geoderma, 430: 116314. Go to original source...
  3. Bai T., Qiu Y., Hu S. (2024): Nitrogen availability mediates the effects of roots and mycorrhizal fungi on soil organic carbon decomposition: A meta-analysis. Pedosphere, 34: 289-296. Go to original source...
  4. Baker J.M., Ochsner T.E., Venterea R.T., Griffis T.J. (2007): Tillage and soil carbon sequestration - what do we really know? Agriculture, Ecosystems & Environment, 118: 1-5. Go to original source...
  5. Bankó L., Tóth G., Marton C.L., Hoffmann S. (2021): Hot-water extractable C and N as indicators for 4p1000 goals in a temperate-climate long-term field experiment: A case study from Hungary. Ecological Indicators, 126: 107364. Go to original source...
  6. Bedrna Z., Jenèo M. (2016): Pedogeography. Legalities of Spatial Differentiation of the Pedosphere. Bratislava, Comenius University Bratislava.
  7. Begum R., Jahangir M.M.R., Jahiruddin M., Islam M.R., Bokhtiar S.H., Islam K.R. (2022): Reduced tillage with residue retention improves soil labile carbon pools and carbon lability and management indices in a seven-year trial with wheat-mung bean-rice rotation. Pedosphere, 32: 916-927. Go to original source...
  8. Bellmore R.A., Harrison J.A., Needoba J.A., Brooks E.S., Keller C.K. (2015): Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment. Water Research, 51: 8146-8164. Go to original source...
  9. Blair G.J., Lefroy R.D.B., Lisle L. (1995): Soil carbon fractions, based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46: 1459-1466. Go to original source...
  10. Bongiorno G., Bünemann E.K., Oguejiofor C.U., Meier J., Gort G., Comans R., Mäder P., Brussaard L., de Goede R. (2019): Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99: 38-50. Go to original source...
  11. Brevilieri R.C., Dieckow J., Barth G., Veloso M.G., Pergher M., Pauletti V., Joris H.A.W. (2024): No-tillage and fertilization effectively improved soil carbon and nitrogen in a subtropical Ferralsol. Soil & Tillage Research, 241: 106095. Go to original source...
  12. Bu X., Ding J., Wang L., Yu X., Huang W., Ruan H. (2011): Biodegradation and chemical characteristics of hot-water extractable organic matter from soils under four different vegetation types in the Wuyi Mountains, south-eastern China. European Journal of Soil Biology, 47: 102-107. Go to original source...
  13. Büchi L., Walder F., Banerjee S., Colombi T., van der Heijden M.G.A., Keller T., Charles R. Six J. (2022): Pedoclimatic factors and management determine soil organic carbon and aggregation in farmer fields at a regional scale. Geoderma, 409: 115632. Go to original source...
  14. Buresova A., Tejnecky V., Kopecky J., Drabek O., Madrova P., Rerichova N., Omelka M., Krizova P., Nemecek K., Parr T.B., Ohno T., Sagova-Mareckova M. (2021): Litter chemical quality and bacterial community structure influenced decomposition in acidic forest soil. European Journal of Soil Biology, 103: 103271. Go to original source...
  15. Chen H., Hao Y., Ma Y., Wang Ch., Liu M., Mehmood I., Fan M., Plante A.F. (2024a): Maize straw-based organic amendments and nitrogen fertilizer effects on soil and aggregate-associated carbon and nitrogen. Geoderma, 443: 116820. Go to original source...
  16. Chen L., Zhou S., Zhang Q., Zou M., Yin Q., Qiu Y., Qin W. (2024b): Effect of organic material addition on active soil organic carbon and microbial diversity: A meta-analysis. Soil & Tillage Research, 241: 106128. Go to original source...
  17. Cheng Y., Xu G., Wang X., Li P., Dang X., Jiang W., Ma T., Wang B., Gu F., Li Z. (2023): Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecological Indicators, 155: 110988. Go to original source...
  18. Corvasce M., Zsolnay A., D'Orazio V., Lopez R., Miano T.M. (2006): Characterization of water extractable organic matter in a deep soil profile. Chemosphere, 62: 1583-1590. Go to original source... Go to PubMed...
  19. Cui J., Li Z., Liu Z., Ge B., Fang Ch., Zhou Ch., Tang B. (2014): Physical and chemical stabilization of soil organic carbon along a 500-year cultivated soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects. Agriculture, Ecosystems & Environment, 196: 10-20. Go to original source...
  20. Dal Ferro N., Stevenson B., Morari F., Mülle K. (2023): Long-term tillage and irrigation effects on aggregation and soil organic carbon stabilization mechanisms. Geoderma, 432: 116398. Go to original source...
  21. Dale V.H., Beyeler S.C. (2001): Challenges in the development and use of ecological indicators. Ecological Indicators, 1: 3-10. Go to original source...
  22. de Souza R.S., de Morais I.S., Rosset J.S., de Melo Rodrigues T., Loss A., Pereira M.G. (2024): Aggregation as soil quality indicator in areas under different uses and managements. Farming System, 2: 100082. Go to original source...
  23. Duval M.E., Galantini J.A., Martínez J.M., Limbozzi F. (2018): Labile soil organic carbon for assessing soil quality: Influence of management practices and edaphic conditions. Catena, 171: 316-326. Go to original source...
  24. Fernandes M.M.H., Coelho A.P., da Silva M.F., Fernandes C. (2022): Do fallow in the off-season and crop succession promote differences in soil aggregation in no-tillage systems? Geoderma, 412: 115725. Go to original source...
  25. Ferrarezi R.S., Lin X., Gonzalez Neira A.C., Tabay Zambon F., Hu H., Wang X., Huang J.H., Fan G. (2022): Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Frontiers in Plant Science, 13: 1-17. Go to original source... Go to PubMed...
  26. Fissore C., Dalzell B.J., Berhe A.A., Voegtle M., Evans M., Wu A. (2017): Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149: 140-149. Go to original source...
  27. Fu Y., Hu Z., Zhu Q., Rong Y. (2023): Characteristics of labile organic carbon fractions under different types of subsidence waterlogging areas in a coal mining area: A case study in Xinglongzhuang Coal Mine, China. Catena, 232: 107398. Go to original source...
  28. Geraei D.S., Hojati S., Landi A., Cano A.F. (2016): Total and labile forms of soil organic carbon as affected by land use change in south-western Iran. Geoderma Regional, 7: 29-37. Go to original source...
  29. Ghani A., Dexter M., Perrott K.W. (2003): Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology & Biochemistry, 35: 1231-1243. Go to original source...
  30. Guigue J., Lévêque J., Mathieu O., Schmitt-Kopplin P., Lucio M., Arrouays D., Jolivet C., Dequiedt S., Prévost-Bouré N.Ch., Ranjard L. (2015): Water-extractable organic matter linked to soil physico-chemistry and microbiology at the regional scale. Soil Biology & Biochemistry, 84: 158-167. Go to original source...
  31. Guo Z., Chang Ch., Zou X., Wang R., Li J., Li Q. (2021): A model for characterizing dry soil aggregate size distribution. Catena, 198: 105018. Go to original source...
  32. Hao G., Dong Z. (2023): Vegetation succession accelerated the accumulation of soil organic carbon on road-cut slopes by changing the structure of the bacterial community. Ecological Engineering, 197: 107118. Go to original source...
  33. Hou Q., Ni Y., Huang S., Zuo T., Wang J., Ni W. (2023): Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: A meta-analysis. Pedosphere, 33: 172-184. Go to original source...
  34. Hu Q., Liu T., Ding H., Li Ch., Yu M., Liu J., Cao C. (2023): The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice-wheat rotation system. Pedobiologia, 101: 150913. Go to original source...
  35. Huang B., Zhang L., Cao Y., Yang Y., Wang P., Li Z., Lin Y. (2023): Effects of land-use type on soil organic carbon and carbon pool management index through arbuscular mycorrhizal fungi pathways. Global Ecology & Conservation, 43: e02432. Go to original source...
  36. Husain H., Keitel C., Dijkstra F.A. (2024): Fungi are more important than bacteria for soil carbon loss through priming effects and carbon protection through aggregation. Applied Soil Ecology, 195: 105245. Go to original source...
  37. Jantalia C.P., Resck D.V.S., Alves B.J.R., Zotarelli L., Urquiaga S., Boddey R.M. (2007): Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil & Tillage Research, 95: 97-109. Go to original source...
  38. Jaremko D., Kalembasa D. (2014): A comparison of methods for the determination of cation exchange capacity of soils. Ecological Chemistry & Engineering, 21: 487-498. Go to original source...
  39. Ji X., Jiang J., Wang Y., Colinet G., Feng W. (2024): Small straw addition enhances straw decomposition and carbon stabilized in soil aggregates over time. Soil & Tillage Research, 238: 106022. Go to original source...
  40. Jiang Y., Li S., Barnes A.D., Liu J., Zhu G., Luan L., Dini-Andreote F., Geisen S., Sun B. (2023): Unraveling the importance of top-down predation on bacterial diversity at the soil aggregate level. Geoderma, 439: 116658. Go to original source...
  41. Kan Z.-R., Virk A.L., He C., Liu Q.-Y., Qi J.Y., Dang Y.P., Zhao X., Zhang H.-L. (2020): Characteristics of carbon mineralization and accumulation under long-term conservation tillage. Catena, 193: 104636. Go to original source...
  42. Kilpeläinen J., Peltoniemi K., Ojanen P., Mäkiranta P., Adamczyk S., Domisch T., Laiho R., Adamczyk B. (2023): Waterlogging may reduce chemical soil C stabilization in forested peatlands. Soil Biology & Biochemistry, 187: 109229. Go to original source...
  43. Koch H.J., Stockfisch N. (2006): Loss of soil organic matter upon ploughing under a loess soil after several years of conservation tillage. Soil & Tillage Research, 86: 73-83. Go to original source...
  44. Kode¹ová R., Roho¹ková M., ®igová A. (2009): Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64: 550-554. Go to original source...
  45. Korec P., Lauko V., Tolmáèi L., Zubrický G., Mièietová E. (1997): Region and Districts of Slovakia. A New Administrative Structure. Bratislava, Q111.
  46. Kupka D., Gruba P. (2022): Effect of pH on the sorption of dissolved organic carbon derived from six tree species in forest soils. Ecological Indicators, 140: 108975. Go to original source...
  47. Lãcãtuºu A.-R., Domnariu H., Paltineanu C., Dumitru S., Vrînceanu A., Moraru I., Anghel A., Marica D. (2024): Influence of some environmental variables on organic carbon and nitrogen stocks in grassland mineral soils from various temperate-climate ecosystems. Environmental & Experimental Botany, 217: 105554. Go to original source...
  48. Laranjeira L.T., Schiavo J.A., de Souza Oliveira N., Pereira M.G., Viana de Moraes E.M., Cirilo de Souza A., Ozório J.M.B. (2024): Black soils in the southwest of the Brazilian Pantanal: Organic carbon and secondary carbonates accumulation in Phaeozems-Gleysol-Chernozem. Journal of South American Earth Sciences, 141: 104935. Go to original source...
  49. Lee S.B., Lee C.H., Jung K.Y., Park K.D., Lee D., Kim P.J. (2009): Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil & Tillage Research, 104: 227-232. Go to original source...
  50. Li T., Zhang Y., Bei S., Li X., Reinsch S., Zhang H., Zhang J. (2020): Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena, 194: 104739. Go to original source...
  51. Liang Y., Rillig M.C., Chen H.Y.H., Shan R., Ma Z. (2024): Soil pH drives the relationship between the vertical distribution of soil microbial biomass and soil organic carbon across terrestrial ecosystems: A global synthesis. Catena, 238: 107873. Go to original source...
  52. Liao Ch., Chang K., Wu Ch., Zhang D., Wang Ch., Cheng X. (2024): Divergence in soil particulate and mineral-associated organic carbon reshapes carbon stabilization along an elevational gradient. Catena, 235: 107682. Go to original source...
  53. Liu Ch., Jin Y., Lin F., Jiang Ch., Zeng X., Feng, D., Huang F., Tang J. (2023a): Land use change alters carbon and nitrogen dynamics mediated by fungal functional guilds within soil aggregates. Science of The Total Environment, 902: 166080. Go to original source... Go to PubMed...
  54. Liu K., Li P., Li G., Ma X., Liu M., Liu J., Wu M., Li Z. (2023b): Long-term fertilization promotes soil organic nitrogen accumulation by increasing the abundance of keystone microbial cluster across aggregates. Applied Soil Ecology, 192: 105086. Go to original source...
  55. Liu X., Li L., Qi Z., Han J., Zhu Y. (2017): Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China. Science of The Total Environment, 586: 1038-1045. Go to original source... Go to PubMed...
  56. Loginov W., Wisniewski W., Gonet S.S., Ciescinska B. (1987): Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20: 47-52.
  57. Luo X., Zhang R., Zhang L., Frew A., Yu H., Hou E., Wen D. (2024): Mechanisms of soil organic carbon stabilization and its response to conversion of primary natural broadleaf forests to secondary forests and plantation forests. Catena, 240: 108021. Go to original source...
  58. Ma R., Jiang Y., Liu B., Fan H. (2021): Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil & Tillage Research, 207: 104855. Go to original source...
  59. Malou O.P., Chevallier T., Moulin P., Sebag D., Rakotondrazafy M.N, Badiane-Ndour N.Y., Thiam A., Chapuis-Lardy L. (2023): Measuring the stability of soil organic carbon in Arenosols in the Senegalese Groundnut Basin. Journal of Arid Environments, 213: 104978. Go to original source...
  60. Martínez J.M., Galantini J.A., Duval M.E., López F.M. (2017): Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil & Tillage Research, 169: 71-80. Go to original source...
  61. Martí-Roura M., Hagedorn F., Rovira P., Romanyà J. (2019): Effect of land use and carbonates on organic matter stabilization and microbial communities in Mediterranean soils. Geoderma, 351: 103-115. Go to original source...
  62. Oliveira F.C.C., Bacon A., Fox T.R., Jokela E.J., Kane M.B., Martin T.A., Noormets A., Ross C.W., Vogel J., Markewitz D. (2022): A regional assessment of permanganate oxidizable carbon for potential use as a soil health indicator in managed pine plantations. Forest Ecology & Management, 521: 120423. Go to original source...
  63. Pavlù L., Kode¹ová R., Va¹át R., Fér M., Klement A., Nikodem A., Kapièka A. (2022): Estimation of the stability of topsoil aggregates in areas affected by water erosion using selected soil and terrain properties. Soil & Tillage Research, 219: 105348. Go to original source...
  64. Pulleman M., Wills S., Creamera R., Dickd R., Ferguson R., Hooper D., Williams C., Margenot A.J. (2021): Soil mass and grind size used for sample homogenization strongly affect permanganate-oxidizable carbon (POXC) values, with implications for its use as a national soil health indicator. Geoderma, 383: 114742. Go to original source...
  65. Qiu H., Liu J., Boorboori M.R., Li D., Chen S, Ma X., Cheng P., Zhang H. (2023a): Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time. Science of The Total Environment, 855: 158876. Go to original source... Go to PubMed...
  66. Qiu Y., Zhou S., Zhang C., Chen L., Qin W., Zhang Q. (2023b): Vertical distribution and weathering characteristic of microplastics in soil profile of different land use types. Science of The Total Environment, 905: 166902. Go to original source... Go to PubMed...
  67. Qu W., Li J., Han G., Wu H., Song W., Zhang X. (2019): Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. Journal of Soils & Sediments, 19: 609-617. Go to original source...
  68. Quigley M.Y., Negassa W.C., Guber A.K., Rivers M.L., Kravchenko A.N. (2018): Influence of pore characteristics on the fate and distribution of newly added carbon. Frontiers in Environmental Science, 6: 51. Go to original source...
  69. Ramírez P.B., Calderón F.J., Fonte S.T., Santibáñez F., Bonilla C.A. (2020): Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecological Indicators, 111: 106042. Go to original source...
  70. Rhoades J.D. (1982): Soluble salts. In: Page A.L. (eds): Methods of Soil Analysis. Madison, American Society of Agronomy: 167-179. Go to original source...
  71. Sarkar D., Haldar A. (2005): Physical and Chemical Methods in Soil Analysis. New Delhi, New Age International.
  72. Sequeira C.H., Alley M.M., Jones B.P. (2011): Evaluation of potentially labile soil organic carbon and nitrogen fractionation procedures. Soil Biology & Biochemistry, 43: 438-444. Go to original source...
  73. Six J., Conant R.T., Paul E.A., Panstian K. (2002): Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant & Soil, 241: 151-176. Go to original source...
  74. Skjemstad J.O., Baldock J.A. (2007): Total and organic carbon. In: Carter M.R., Gregorich E.G. (eds): Soil Sampling and Methods of Analysis. Boca Raton, CRC Press: 225-238. Go to original source...
  75. Song W., Liu Y., Tong X. (2017): Newly sequestrated soil organic carbon varies with soil depth and tree species in three forest plantations from north-eastern China. Forest Ecology & Management, 400: 384-395. Go to original source...
  76. Song X.Y., Spaccini R., Pan G., Piccolo A. (2013): Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Science of The Total Environment, 458-460: 319-330. Go to original source... Go to PubMed...
  77. Sparling G., Vojvodiè-Vukoviè M., Schipper L.A. (1998): Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biology & Biochemistry, 30: 1469-1472. Go to original source...
  78. Standford G., Smith S.J. (1978): Oxidative release of potentially mineralizable soil nitrogen by acid permanganate extraction. Soil Science, 126: 210-218. Go to original source...
  79. Tomashefski D., Slater B. (2023): Water-stable aggregation among untilled and intensively tilled soils with similar contents of aggregating agents in central Ohio, USA. Geoderma Regional, 35: e00727. Go to original source...
  80. van Reeuwijk L.P. (2002): Procedures for Soil Analysis. Wageningen, International Soil Reference and Information Centre.
  81. Wang D., Abdullah K.M., Xu Z., Wang W. (2020): Water extractable organic C and total N: The most sensitive indicator of soil labile C and N pools in response to the prescribed burning in a suburban natural forest of subtropical Australia. Geoderma, 377: 114586. Go to original source...
  82. Wang H., Wang S., Wang R., Zhang Y., Wang X., Lia J. (2019): Direct and indirect linkages between soil aggregates and soil bacterial communities under tillage methods. Geoderma, 354: 113879. Go to original source...
  83. Wang X., Butterly C.R., Baldock J.A., Tang C. (2017): Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH. Science of The Total Environment, 587-588: 502-509. Go to original source... Go to PubMed...
  84. Wang X., Sheng L., Li Y., Jiang H., Lv Z., Qi W., Luo W. (2022): Soil labile organic carbon indicating seasonal dynamics of soil organic carbon in northeast peatland. Ecological Indicators, 138: 108847. Go to original source...
  85. WRB (2015): World Reference Base for Soil Resources 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 198. Rome, FAO.
  86. Wu L., Zheng H., Wang X. (2021): Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294: 112993. Go to original source... Go to PubMed...
  87. Xiao D., Huang Y., Feng S., Ge Y., Zhang W., Hea X., Wang K. (2018): Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient. Geoderma, 321: 79-89. Go to original source...
  88. Xiao D., He X., Zhang W., Chen M., Hu P., Wu H., Liao X., Wang, K. (2024): Strengthen interactions among fungal and protistan taxa by increasing root biomass and soil nutrient in the topsoil than in the soil-rock mixing layer. Journal of Environmental Management, 355: 120468. Go to original source... Go to PubMed...
  89. Xiao J., Dong S., Zhao Z., Han Y., Li S., Shen H., Ding C. (2021b): Stabilization of soil organic carbon in the alpine meadow is dependent on the nitrogen deposition level on the Qinghai-Tibetan Plateau. Ecological Engineering, 170: 106348. Go to original source...
  90. Xiao L., Zhang W., Hu P., Xiao D., Yang R, Ye Y., Wang K. (2021a): The formation of large macro-aggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical karst area. Science of The Total Environment, 801: 149588. Go to original source... Go to PubMed...
  91. Xiao Sh.-Sh., Ye Y.-Y., Xiao D., Chen W.-R., Zhang W., Wang K.-L. (2019): Effects of tillage on soil N availability, aggregate size, and microbial biomass in a subtropical karst region. Soil & Tillage Research, 192: 187-195. Go to original source...
  92. Xu X., Bi R., Song M., Dong Y., Jiao Y., Wang B., Xiong Z. (2024): Organic substitutions enhanced soil carbon stabilization and reduced carbon footprint in a vegetable farm. Soil & Tillage Research, 236: 105955. Go to original source...
  93. Yu P., Li Y., Liu S., Liu J., Ding Z., Ma M., Tang X. (2022): Afforestation influences soil organic carbon and its fractions associated with aggregates in a karst region of Southwest China. Science of The Total Environment, 814: 152710. Go to original source... Go to PubMed...
  94. Zhang C., Wang Y., Tang Y., Hong B. (2024): Soil burial controls organic carbon variability in the deep soil of the Loess Critical Zone. Earth Critical Zone, 1: 100005. Go to original source...
  95. Zhang X., Xin X., Zhu A., Zhang J., Yang W. (2017): Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 156: 176-183. Go to original source...
  96. Zhao L., Sun Y., Zhang X., Yang X., Drury C.F. (2006): Soil organic carbon in clay and silt sized particles in Chinese Mollisols: Relationship to the predicted capacity. Geoderma, 132: 315-323. Go to original source...
  97. Zhao M., Zhou J., Kalbitz K. (2008): Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. European Journal of Soil Biology, 44: 158-165. Go to original source...
  98. Zhao R., Kuzyakov Y., Zhang H., Wang Z., Li T., Shao L., Jiang L., Wang R., Li M., Sun O.J., Jiang Y., Han X. (2024): Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe. Geoderma, 443: 116841. Go to original source...
  99. Zhong X.-L., Li J.-T., Li X.-J., Ye Y.-Ch., Liu S.-S., Hallett P.D., Ogden M.R., Naveed M. (2017): Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma, 285: 323-332. Go to original source...
  100. Zhou Y., Jia X., Han L., Tian G., Kang S., Zhao Y. (2021): Spatial characteristics of the dominant fungi and their driving factors in forest soils in the Qinling Mountains, China. Catena, 206: 105504. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.