Soil & Water Res., 2025, 20(2):105-118 | DOI: 10.17221/77/2024-SWR

Biochar innovations for sustainable agriculture: Acidification and zinc enrichment strategies to improve calcareous soil fertility and wheat yieldOriginal Paper

Salih Demirkaya*, Coskun Gülser
Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye

Calcareous soils, typically characterized by low fertility, low organic matter and nitrogen content, and often deficient in phosphorus, zinc, and iron, as well as having low microbial activity, require the development of sustainable soil conditioners to improve fertility. To address these shortcomings and promote sustainable agriculture, biochar, especially with acidic character, may offer a promising solution. This study investigates the effects of modified biochar by H2SO4 and ZnSO4 on soil properties and wheat yield under field conditions. For this purpose, biochar (B), acidified biochar (AB), Zn enriched biochar (BZn), and acidified-Zn enriched biochar (ABZn) were applied to the field at two different doses (0.5 and 1.0%) together with the control treatment (Ck) without biochar application. AB1.0% was determined as the most effective treatment in decreasing soil pH (0.15 units), while B1.0% was determined as the most effective treatment in increasing organic carbon and cation exchange capacity, 13% and 32%, respectively. The effect of the treatments varied for specific nutrients. The highest antioxidant enzyme activities were found in acidified biochars where the lowest yields were obtained. Compared to the Ck, the highest catalase (CAT) (32%) was determined in ABZn1.0%, ascorbate peroxidase (APX) (56%) and glutathione peroxidase (GPX) (36%) were determined in ABZn0.5%, and superoxide dismutase (SOD) (28%) was determined in AB0.5%. The highest proline (PRO), with the least decrease in yield, was found in the AB1.0% application, which is 205% more than Ck. B and BZn treatments all increased the grain yield, and the highest increase was 20% in B1.0% when compared to the Ck.

Keywords: antioxidant enzyme activity; biochar; calcareous soil; nutrient enhancement; wheat; zinc

Received: July 6, 2024; Revised: February 7, 2025; Accepted: February 10, 2025; Prepublished online: February 19, 2025; Published: April 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Demirkaya S, Gülser C. Biochar innovations for sustainable agriculture: Acidification and zinc enrichment strategies to improve calcareous soil fertility and wheat yield. Soil & Water Res. 2025;20(2):105-118. doi: 10.17221/77/2024-SWR.
Download citation

References

  1. Aebi H. (1984): [13] Catalase in vitro. Methods in Enzymology, 105: 121-126. Go to original source... Go to PubMed...
  2. Alloway B.J. (2008): Zinc in Soils and Crop Nutrition. 2nd Ed. Brussels, Paris, IZA, IFA.
  3. Asap A., Haruna A.O., Majid N.M.A., Ali M. (2018): Amending triple superphosphate with chicken litter biochar improves phosphorus availability. Eurasian Journal of Soil Science, 7: 121-132. Go to original source...
  4. Ashraf M., Foolad M.R. (2007): Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. Go to original source...
  5. Atkinson C.J., Fitzgerald J.D., Hipps N.A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337: 1-18. Go to original source...
  6. Bates L.S., Waldren R., Teare I. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  7. Beauchamp C., Fridovich I. (1971): Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. Go to original source... Go to PubMed...
  8. Berwal M., Ram C. (2018): Superoxide dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. Abiotic and Biotic Stress in Plants, 7: 1-10. Go to original source...
  9. Biederman L.A., Harpole W.S. (2013): Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5: 202-214. Go to original source...
  10. Brady N.C., Weil R.R., Weil R.R. (2008): The Nature and Properties of Soils. Upper Saddle River, Prentice Hall.
  11. Brtnicky M., Datta R., Holatko J., Bielska L., Gusiatin Z.M., Kucerik J., Hammerschmiedt T., Danish S., Radziemska M., Mravcova L. (2021): A critical review of the possible adverse effects of biochar in the soil environment. Science of the Total Environment, 796: 148756. Go to original source... Go to PubMed...
  12. Cakmak I., Marschner H. (1992): Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98: 1222-1227. Go to original source... Go to PubMed...
  13. Cakmak I., Kutman U.B. (2018): Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69: 172-180. Go to original source...
  14. Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. (2007): Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45: 629-634. Go to original source...
  15. Chaudhary S., Dheri G., Brar B. (2017): Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil and Tillage Research, 166: 59-66. Go to original source...
  16. Chen M., Wang F., Zhang D.-l., Yi W.-M., Liu Y. (2021): Effects of acid modification on the structure and adsorption NH4+-N properties of biochar. Renewable Energy, 169: 1343-1350. Go to original source...
  17. Cooper J., Greenberg I., Ludwig B., Hippich L., Fischer D., Glaser B., Kaiser M. (2020): Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295: 106882. Go to original source...
  18. de la Fuente R.G., Carrión C., Botella S., Fornes F., Noguera V., Abad M. (2007): Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology, 98: 3561-3569. Go to original source... Go to PubMed...
  19. De Vries J., Groenestein C., De Boer I. (2012): Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. Journal of Environmental Management, 102: 173-183. Go to original source... Go to PubMed...
  20. Demirkaya S., Gülser C. (2023): The effect of acidified biochar applications on some macro-element contentes of a calcareous soil. In: Proc. Vth Int. Agricultural, Biological and Life Science Conference, Erdine, Sept 18-20, 2023: 1069.
  21. Demirkaya S., Gülser C., Ay A. (2021): The effect of iron enriched acidified and non-acidified biochars on DTPA extractable iron content of a calcareous soil. In: Proc. Int. Symposium on Soil Science and Plant Nutrition, Samsun, Dec 18-19, 2021: 197-201.
  22. Domingues R.R., Sánchez-Monedero M.A., Spokas K.A., Melo L.C.A., Trugilho P.F., Valenciano M.N., Silva C.A. (2020): Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy, 10: 824. Go to original source...
  23. El-Sharkawy M., El-Naggar A.H., Al-Huqail A.A., Ghoneim A.M. (2022): Acid-modified biochar impacts on soil properties and biochemical characteristics of crops grown in saline-sodic soils. Sustainability, 14: 8190. Go to original source...
  24. Foyer C.H., Noctor G. (2005): Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17: 1866-1875. Go to original source... Go to PubMed...
  25. Garg N., Manchanda G. (2009): Ros generation in plants: Boon or bane? Plant Biosystems, 143: 81-96. Go to original source...
  26. Gaskin J.W., Speir R.A., Harris K., Das K., Lee R.D., Morris L.A., Fisher D.S. (2010): Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102: 623-633. Go to original source...
  27. Gee G.W., Or D. (2002): Particle-size analysis. In: Dane J.H., Topp G.C. (eds.): Methods of Soil Analysis: Part 4 Physical Methods. SSSA Book Series: 255-293. Go to original source...
  28. Gul S., Whalen J.K., Thomas B.W., Sachdeva V., Deng H. (2015): Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206: 46-59. Go to original source...
  29. Gunes A., Inal A., Taskin M., Sahin O., Kaya E., Atakol A. (2014): Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30: 182-188. Go to original source...
  30. Gunes A., Inal A., Sahin O., Taskin M.B., Atakol O., Yilmaz N. (2015): Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use and Management, 31: 429-437. Go to original source...
  31. Gülser C. (2006): Effect of forage cropping treatments on soil structure and relationships with fractal dimensions. Geoderma, 131: 33-44. Go to original source...
  32. Habig W.H., Pabst M.J., Jakoby W.B. (1974): Glutathione s-transferases: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139. Go to original source...
  33. Hailegnaw N.S., Mercl F., Praèke K., Száková J., Tlusto¹ P. (2019): Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19: 2405-2416. Go to original source...
  34. Han Y., Cao X., Ouyang X., Sohi S.P., Chen J. (2016): Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145: 336-341. Go to original source... Go to PubMed...
  35. Ippolito J.A., Spokas K.A., Novak J.M., Lentz R.D., Cantrell K.B. (2015): Biochar elemental composition and factors influencing nutrient retention. In: Lehmann J., Joseph S. (eds.): Biochar for Environmental Management: Science, Technology and Implementation. 2nd Ed. Routledge, Taylor and Francis Group: 139-163.
  36. Jeffery S., Verheijen F.G., van der Velde M., Bastos A.C. (2011): A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144: 175-187. Go to original source...
  37. Jeffery S., Verheijen F.G., Kammann C., Abalos D. (2016): Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry, 101: 251-258. Go to original source...
  38. Khan N., Bolan N., Jospeh S., Anh M.T.L., Meier S., Kookana R., Borchard N., Sánchez-Monedero M.A., Jindo K., Solaiman Z.M., et al. (2023): Complementing compost with biochar for agriculture, soil remediation and climate mitigation. Advances in Agronomy, 179: 1-90. Go to original source...
  39. Kilic M., Kirbiyik Ç., Çepelioğullar Ö., Pütün A.E. (2013): Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283: 856-862. Go to original source...
  40. Laird D.A., Fleming P., Davis D.D., Horton R., Wang B., Karlen D.L. (2010): Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma, 158: 443-449. Go to original source...
  41. Lee J.W., Kidder M., Evans B.R., Paik S., Buchanan Iii A., Garten C.T., Brown R.C. (2010): Characterization of biochars produced from corn stovers for soil amendment. Environmental Science & Technology, 44: 7970-7974. Go to original source... Go to PubMed...
  42. Leytem A.B., Dungan R.S., Moore A. (2011): Nutrient availability to corn from dairy manures and fertilizer in a calcareous soil. Soil Science, 176: 426-434. Go to original source...
  43. Li B., Yang L., Wang C.-Q., Zhang Q.-P., Liu Q.-C., Li Y. D., Xiao R. (2017): Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175: 332-340. Go to original source... Go to PubMed...
  44. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O'Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J. (2006): Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730. Go to original source...
  45. Lindsay W.L., Norvell W. (1978): Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428. Go to original source...
  46. Lindsay W., Cox F. (1985): Micronutrient soil testing for the tropics. In: Micronutrients in Tropical Food Crop Production. Springer: 169-200. Go to original source...
  47. Liu Q., Liu B., Zhang Y., Lin Z., Zhu T., Sun R., Wang X., Ma J., Bei Q., Liu G. (2017): Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology and Biochemistry, 104: 8-17. Go to original source...
  48. Liu X., Zhang A., Ji C., Joseph S., Bian R., Li L., Pan G., Paz-Ferreiro J. (2013): Biochar's effect on crop productivity and the dependence on experimental conditions - A meta-analysis of literature data. Plant and Soil, 373: 583-594. Go to original source...
  49. Lorenz K., Lal R. (2014): Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177: 651-670. Go to original source...
  50. Luo Y., Durenkamp M., De Nobili M., Lin Q., Brookes P. (2011): Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 43: 2304-2314. Go to original source...
  51. Madari B.E., Silva M.A., Carvalho M.T., Maia A.H., Petter F.A., Santos J.L., Tsai S.M., Leal W.G., Zeviani W.M. (2017): Properties of a sandy clay loam haplic ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment. Geoderma, 305: 100-112. Go to original source...
  52. Moore A., Hines S., Brown B., Falen C., de Haro Marti M., Chahine M., Norell R., Ippolito J., Parkinson S., Satterwhite M. (2014): Soil-plant nutrient interactions on manure-enriched calcareous soils. Agronomy Journal, 106: 73-80. Go to original source...
  53. Munera-Echeverri J.L., Martinsen V., Strand L.T., Zivanovic V., Cornelissen G., Mulder J. (2018): Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment, 642: 190-197. Go to original source... Go to PubMed...
  54. Müller-Stöver D., Ahrenfeldt J., Holm J.K., Shalatet S.G.S., Henriksen U., Hauggaard-Nielsen H. (2012): Soil application of ash produced by low-temperature fluidized bed gasification: Effects on soil nutrient dynamics and crop response. Nutrient Cycling in Agroecosystems, 94: 193-207. Go to original source...
  55. Naeem M.A., Khalid M., Aon M., Abbas G., Amjad M., Murtaza B., Khan W.-u.-D., Ahmad N. (2018): Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. Journal of Plant Nutrition, 41: 112-122. Go to original source...
  56. Nelson D.W., Sommers L.E. (1982): Total carbon, organic carbon, and organic matter. In: Page A.L: (eds.): Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. 2nd Ed. Agronomy Monographs: 539-579. Go to original source...
  57. Olsen S.R., Cole C.V., Watanabe F.S. (1954): Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No. 939, Washington DC., US Government Printing Office.
  58. Prommer J., Wanek W., Hofhansl F., Trojan D., Offre P., Urich T., Schleper C., Sassmann S., Kitzler B., Soja G. (2014): Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE, 9: e86388. Go to original source... Go to PubMed...
  59. Rengel Z. (2015): Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15: 397-409. Go to original source...
  60. Rezaei M.K., Shobbar Z.-S., Shahbazi M., Abedini R., Zare S. (2013): Glutathione S-transferase (GST) family in barley: Identification of members, enzyme activity, and gene expression pattern. Journal of Plant Physiology, 170: 1277-1284. Go to original source... Go to PubMed...
  61. Rhoades J. (1982): Cation exchange capacity. In: Page A.L. (ed.): Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Madison, American Society of Agronomy, Soil Science Society of America: 149-157. Go to original source...
  62. Sahin O., Taskin M., Kaya E., Atakol O., Emir E., Inal A., Gunes A. (2017): Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33: 447-456. Go to original source...
  63. Sajjadi B., Zubatiuk T., Leszczynska D., Leszczynski J., Chen W.Y. (2019): Chemical activation of biochar for energy and environmental applications: A comprehensive review. Reviews in Chemical Engineering, 35: 777-815. Go to original source...
  64. Sarioğlu F., Dengiz O. (2012): Assessment of different parametric approaches in land evaluation studies. Soil Water Journal, 1: 82-87.
  65. Sharma B.D., Arora H., Kumar R., Nayyar V.K. (2004): Relationships between soil characteristics and total and DTPA-extractable micronutrients in inceptisols of Punjab. Communications in Soil Science and Plant Analysis, 35: 799-818. Go to original source...
  66. Shi S., Zhang Q., Lou Y., Du Z., Wang Q., Hu N., Wang Y., Gunina A., Song J. (2021): Soil organic and inorganic carbon sequestration by consecutive biochar application: Results from a decade field experiment. Soil Use and Management, 37: 95-103. Go to original source...
  67. Sultan H., Ahmed N., Mubashir M., Danish S. (2020): Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Scientific Reports, 10: 595. Go to original source... Go to PubMed...
  68. Szabados L., Savouré A. (2010): Proline: A multifunctional amino acid. Trends in Plant Science, 15: 89-97. Go to original source... Go to PubMed...
  69. ªiºecioğlu M., Gülçin İ., Cankaya M., Atasever A., ªehitoğlu M.H., Kaya H.B., Özdemir H. (2010): Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.). Journal of Medicinal Plants Research, 4: 1187-1196.
  70. Uarrota V.G., Moresco R., Schmidt E.C., Bouzon Z.L., da Costa Nunes E., de Oliveira Neubert E., Peruch L.A.M., Rocha M., Maraschin M. (2016): The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration. Food Chemistry, 197: 737-746. Go to original source... Go to PubMed...
  71. Vahedi R., Rasouli-Sadaghiani M.H., Barin M., Vetukuri R.R. (2022): Effect of biochar and microbial inoculation on P, Fe, and Zn bioavailability in a calcareous soil. Processes, 10: 343. Go to original source...
  72. Verslues P.E., Sharma S. (2010): Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book, 8: e0140. Go to original source... Go to PubMed...
  73. Wang H., Xia W., Lu P. (2017): Study on adsorption characteristics of biochar on heavy metals in soil. Korean Journal of Chemical Engineering, 34: 1867-1873. Go to original source...
  74. Waszczak C., Carmody M., Kangasjärvi J. (2018): Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69: 209-236. Go to original source... Go to PubMed...
  75. White P.J., Karley A.J. (2010): Potassium. In: Hell R., Mendel R.R. (eds.): Cell Biology of Metals and Nutrients. Springer: 199-224. Go to original source...
  76. Xiang L., Liu S., Ye S., Yang H., Song B., Qin F., Shen M., Tan C., Zeng G., Tan X. (2021): Potential hazards of biochar: The negative environmental impacts of biochar applications. Journal of Hazardous Materials, 420: 126611. Go to original source... Go to PubMed...
  77. Xu M., Lou Y., Sun X., Wang W., Baniyamuddin M., Zhao K. (2011): Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils, 47: 745-752. Go to original source...
  78. Xu Z., Xu X., Yu Y., Yao C., Tsang D.C., Cao X. (2021): Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr (VI) reduction. Journal of Hazardous Materials, 414: 125483. Go to original source... Go to PubMed...
  79. Yang X., Tsibart A., Nam H., Hur J., El-Naggar A., Tack F.M., Wang C.-H., Lee Y.H., Tsang D.C., Ok Y.S. (2019): Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 365: 684-694. Go to original source... Go to PubMed...
  80. Zhang H., Yu X., Jin Z., Zheng W., Zhai B., Li Z. (2017): Improving grain yield and water use efficiency of winter wheat through a combination of manure and chemical nitrogen fertilizer on the loess plateau, China. Journal of Soil Science and Plant Nutrition, 17: 461-474. Go to original source...
  81. Zhang P., Yang F., Zhang H., Liu L., Liu X., Chen J., Wang X., Wang Y., Li C. (2020): Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under saline-alkaline stress. Agronomy, 10: 1562. Go to original source...
  82. Zhao Y., Wang P., Li J., Chen Y., Ying X., Liu S. (2009): The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. European Journal of Agronomy, 31: 36-42. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.