Soil & Water Res., 2025, 20(3):164-177 | DOI: 10.17221/7/2025-SWR

Annual dynamics of plant litter calcium and magnesium stocks in a subtropical forest headwater streamOriginal Paper

Weikang Chen1, Ling Xiong1, Qiqian Wu2, Petr Heděnec3, Yan Peng4, Zemin Zhao1, Chaoxiang Yuan1, Ji Yuan1, Xiangyin Ni4, Fuzhong Wu4, Kai Yue4
1 College of Geographical Sciences, Fujian Normal University, Carbon Zhonghe Future Technology Institute, Fuzhou, P.R. China
2 State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, P.R. China
3 Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
4 Fujian Sanming Forest Ecosystem National Field Scientific Observation and Research Station, Sanming, P.R. China

Forest headwater streams serve as critical interfaces between terrestrial forests and downstream aquatic ecosystems, playing essential roles in the storage and movement of carbon (C) and nutrients. However, despite their importance, our understanding of the dynamics of plant litter calcium (Ca) and magnesium (Mg) stocks within these streams remains limited. In this study, we conducted a quantitative analysis of the spatiotemporal dynamics of plant litter Ca and Mg concentrations and stocks in a subtropical forest headwater stream from March 2021 to February 2022. We found that: (1) the average concentrations of litter Ca and Mg were 9.9 and 0.7 mg/g, respectively, with mean stocks of 8 792.3 and 620.8 mg/m2, respectively; (2) significant variations in litter Ca and Mg concentrations were observed among non-woody debris (13.1 and 0.9 mg/g), fine woody debris (9.0 and 0.5 mg/g), and coarse woody debris (6.1 and 0.4 mg/g), though plant litter type did not significantly affect the stocks of Ca and Mg; and (3) the stocks of Ca and Mg were positively correlated with factors such as rainfall amount, rainfall frequency, water temperature, flow velocity, water depth, electrical conductivity, and discharge, while negatively correlated with stream water alkalinity and dissolved oxygen levels. These findings highlight the critical role of plant litter in headwater streams as a component of forest nutrient stocks and provide empirical support for incorporating headwater streams into the assessment of nutrient stocks and fluxes in forest ecosystems.

Keywords: environmental drivers; litter decomposition; nutrient stoichiometry; riparian nutrient input; seasonal nutrient dynamics; stream ecosystem function

Received: January 28, 2025; Revised: April 25, 2025; Accepted: May 7, 2025; Prepublished online: May 19, 2025; Published: July 1, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chen W, Xiong L, Wu Q, Heděnec P, Peng Y, Zhao Z, et al.. Annual dynamics of plant litter calcium and magnesium stocks in a subtropical forest headwater stream. Soil & Water Res. 2025;20(3):164-177. doi: 10.17221/7/2025-SWR.
Download citation

Supplementary files:

Download fileChen_ESM.pdf

File size: 88.32 kB

References

  1. Allen J., Maunoury-Danger F., Felten V., Danger M., Legout A., Guerold F. (2020): Liming of acidified forests changes leaf litter traits but does not improve leaf litter decomposability in forest streams. Forest Ecology and Management, 475: 118431. Go to original source...
  2. Amani M., Graça M.A.S., Ferreira V. (2019): Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: A meta-analysis. International Review of Hydrobiology, 104: 14-25. Go to original source...
  3. Bataineh M.M., Daniels L.D. (2014): An objective classification of largewood in streams. Forest Ecology and Management, 313: 1-9. Go to original source...
  4. Burrows R.M., Magierowski R.H., Fellman J.B., Barmuta L.A. (2012): Woody debris input and function in old-growth and clear-felled headwater streams. Forest Ecology and Management, 286: 73-80. Go to original source...
  5. Carey N., Chester E.T., Robson B.J. (2021): Flow regime change alters shredder identity but not leaf litter decomposition in headwater streams affected by severe, permanent drying. Freshwater Biology, 66: 1813-1830. Go to original source...
  6. Chauvet E., Ferreira V., Giller P.S., McKie B.G., Tiegs S.D., Woodward G., Elosegi A., Dobson M., Fleituch T., Graça M.A.S., Gulis V., Hladyz S., Lacoursière J.O., Lecerf A., Pozo J., Preda E., Riipinen M., Rîşnoveanu G., Vadineanu A., Vought L.B.M., Gessner M.O. (2016): Chapter three - litter decomposition as an indicator of stream ecosystem functioning at local-to-continental scales: Insights from the european rivfunction project. In: Dumbrell A.J., Kordas R.L., Woodward G. (eds.): Advances in Ecological Research. Academic Press: 99-182. Go to original source...
  7. Chen Y., Sayer E.J., Li Z., Mo Q., Li Y., Ding Y., Wang J., Lu X., Tang J., Wang F. (2016): Nutrient limitation of woody debris decomposition in a tropical forest: Contrasting effects of N and P addition. Functional Ecology, 30: 295-304. Go to original source...
  8. Colvin S.A.R., Sullivan S.M.P., Shirey P.D., Colvin R.W., Winemiller K.O., Hughes R.M., Fausch K.D., Infante D.M., Olden J.D., Bestgen K.R., Danehy R.J., Eby L. (2019): Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries, 44: 73-91. Go to original source...
  9. Dangles O., Gessner M.O., Guerold F., Chauvet E. (2004): Impacts of stream acidification on litter breakdown: Implications for assessing ecosystem functioning. Journal of Applied Ecology, 41: 365-378. Go to original source...
  10. Das S., Maharjan B. (2022): Cropland reference ecological unit: A land classification unit for comparative soil studies. Ecological Indicators, 144: 109468. Go to original source...
  11. Dezzeo N., Herrera R., Escalante G., Briceno E. (1998): Mass and nutrient loss of fresh plant biomass in a small black-water tributary of Caura River, Venezuelan Guayana. Biogeochemistry, 43: 197-210. Go to original source...
  12. Ferreira V., Chauvet E. (2011): Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 17: 551-564. Go to original source...
  13. Ferreira V., Canhoto C. (2015): Future increase in temperature may stimulate litter decomposition in temperate mountain streams: Evidence from a stream manipulation experiment. Freshwater Biology, 60: 881-892. Go to original source...
  14. Ferreira V., Chauvet E., Canhoto C. (2014): Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 72: 206-216. Go to original source...
  15. Gao J., Huang Y., Zhi Y., Yao J., Wang F., Yang W., Han L., Lin D., He Q., Wei B., Grieger K. (2022): Assessing the impacts of urbanization on stream ecosystem functioning through investigating litter decomposition and nutrient uptake in a forest and a hyper-eutrophic urban stream. Ecological Indicators, 138: 108859. Go to original source...
  16. Gomes P.P., Ferreira V., Tonin A.M., Medeiros A.O., Júnior J.F.G. (2018): Combined effects of dissolved nutrients and oxygen on plant litter decomposition and associated fungal communities. Microbial Ecology, 75: 854-862. Go to original source... Go to PubMed...
  17. Guo X., Zhou G., Zhu G., Jiao X. (2019): Effects of calcium on emergence and seedling growth of castor bean under salinity stress. Current Science, 116: 2028-2035. Go to original source...
  18. Hart S.K., Hibbs D.E., Perakis S.S. (2013): Riparian litter inputs to streams in the central Oregon coast range. Freshwater Science, 32: 343-358. Go to original source...
  19. Hou J., Li F., Wang Z., Li X., Yang W. (2021): Budget of plant litter and litter carbon in the subalpine forest streams. Forests, 12: 1764. Go to original source...
  20. Hu W., Wu F., Ni X., Peng Y., Wang Z., Zhao Z., Wang Y., Yue K. (2023): Dynamics of plant litter storage in a subtropical forest headwater stream during the rainy season. Polish Journal of Ecology, 70: 129-141. Go to original source...
  21. Iñiguez-Armijos C., Rausche S., Cueva A., Sánchez-Rodríguez A., Espinosa C., Breuer L. (2016): Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. Ecology and Evolution, 6: 4849-4865. Go to original source... Go to PubMed...
  22. Jin X., Wu F., Hu W., Wang Y., Zhao Z., Peng Y., Ni X., Yue K. (2022): Dynamics of ca and mg storage of non-woody debris in a subtropical forest headwater stream during the rainy season. The Journal of Applied Ecology, 33: 2936-2942.
  23. Juez C., Schärer C., Jenny H., Schleiss A.J., Franca M.J. (2019): Floodplain land cover and flow hydrodynamic control of overbank sedimentation in compound channel flows. Water Resources Research, 55: 9072-9091. Go to original source...
  24. Kittaka P.K. (2023): Temporal Fluctuations in Carbonate System Variables of Lake Superior Tributaries. Minnesota, University of Minnesota.
  25. Kuznetsova A., Brockhoff P.B., Christensen R.H.B. (2017): Lmertest package: Tests in linear mixed effects models. Journal of Statistical Software, 82: 1-26. Go to original source...
  26. Liang Z., Wu F., Ni X., Tan B., Zhang L., Xu Z., Hu J., Yue K. (2019): Woody litter increases headwater stream metal export ratio in an alpine forest. Forests, 10: 379. Go to original source...
  27. Liang Z., Zhuang L., Yang J., Yang F., Yue K., Ni X., Xu Z., Wu F., Li H., Bol R. (2023): Woody debris dominates the exports of carbon and nitrogen from headwater streams in an alpine forest. Ecohydrology, 16: e2531. Go to original source...
  28. Lidman J., Jonsson M., Burrows R.M., Bundschuh M., Sponseller R.A. (2017): Composition of riparian litter input regulates organic matter decomposition: Implications for headwater stream functioning in a managed forest landscape. Ecology and Evolution, 7: 1068-1077. Go to original source... Go to PubMed...
  29. Lin N., Bartsch N., Heinrichs S., Vor T. (2015): Long-term effects of canopy opening and liming on leaf litter production, and on leaf litter and fine-root decomposition in a european beech (Fagus sylvatica L.) forest. Forest Ecology and Management, 338: 183-190. Go to original source...
  30. Liu J., Fang L., Pei W., Li F., Zhao J. (2023): Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis, 89: 73-82. Go to original source...
  31. Matson A.L., Corre M.D., Veldkamp E. (2014): Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization. Global Change Biology, 20: 3802-3813. Go to original source... Go to PubMed...
  32. Mbaka J.G., Schäfer R.B. (2016): Effect of small impoundments on leaf litter decomposition in streams. River Research and Applications, 32: 907-913. Go to original source...
  33. Nelson Mwaijengo G., Msigwa A., Njau K.N., Brendonck L., Vanschoenwinkel B. (2020): Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Science of the Total Environment, 715: 134825. Go to original source... Go to PubMed...
  34. Nuven D.M., Tonin A.M., de Souza Rezende R., Rabelo R.S., Sena G., Bambi P., Gonçalves Jr J.F. (2022): Habitat heterogeneity increases leaf litter retention and fragmentation in a cerrado savanna stream. Limnologica, 92: 125945. Go to original source...
  35. Pozo J., Casas J., Menéndez M., Mollá S., Arostegui I., Basaguren A., Casado C., Descals E., García-Avilés J., González J.M., Larrañaga A., López E., Lusi M., Moya O., Pérez J., Riera T., Roblas N., Salinas M.J. (2011): Leaf-litter decomposition in headwater streams: A comparison of the process among four climatic regions. Journal of the North American Benthological Society, 30: 935-950. Go to original source...
  36. Pye M.C., Vaughan I.P., Ormerod S.J., Durance I. (2023): Organic litter dynamics in headwater streams draining contrasting land uses. Hydrobiologia, 850: 3375-3390. Go to original source...
  37. Renshaw C.E., Dethier E.N., Landis J.D., Kaste J.M. (2022): Seasonal and longitudinal variations in suspended load connectivity between river channels and their margins. Water Resources Research, 58: e2021WR031212. Go to original source...
  38. Riskin S.H., Neill C., Jankowski K., Krusche A.V., McHorney R., Elsenbeer H., Macedo M.N., Nunes D., Porder S. (2017): Solute and sediment export from Amazon forest and soybean headwater streams. Ecological applications, 27: 193-207. Go to original source... Go to PubMed...
  39. Rosemond A.D., Benstead J.P., Bumpers P.M., Gulis V., Kominoski J.S., Manning D.W.P., Suberkropp K., Wallace J.B. (2015): Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347: 1142-1145. Go to original source... Go to PubMed...
  40. Sakamaki T., Richardson J.S. (2013): Nonlinear variation of stream-forest linkage along a stream-size gradient: An assessment using biogeochemical proxies of in-stream fine particulate organic matter. Journal of Applied Ecology, 50: 1019-1027. Go to original source...
  41. Scarsbrook M.R., Quinn J.M., Halliday J., Morse R. (2001): Factors controlling litter input dynamics in streams draining pasture, pine, and native forest catchments. New Zealand Journal of Marine and Freshwater Research, 35: 751-762. Go to original source...
  42. Schulz R., Bundschuh M., Gergs R., Brühl C.A., Diehl D., Entling M.H., Fahse L., Frör O., Jungkunst H.F., Lorke A., Schäfer R.B., Schaumann G.E., Schwenk K. (2015): Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Science of the Total Environment, 538: 246-261. Go to original source... Go to PubMed...
  43. Tank J.L., Rosi-Marshall E.J., Griffiths N.A., Entrekin S.A., Stephen M.L. (2010): A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29: 118-146. Go to original source...
  44. Tonin A.M., Goncalves Jr J.F., Bambi P., Couceiro S.R., Feitoza L.A., Fontana L.E., Hamada N., Hepp L.U., Lezan-Kowalczuk V.G., Leite G.F. (2017): Plant litter dynamics in the forest-stream interface: Precipitation is a major control across tropical biomes. Scientific Reports, 7: 10799. Go to original source... Go to PubMed...
  45. Uhlig D., von Blanckenburg F. (2019): How slow rock weathering balances nutrient loss during fast forest floor turnover in montane, temperate forest ecosystems. Frontiers in Earth Science, 7: 159. Go to original source...
  46. Valett H.M., Ely D.T. (2019): Acidification, stress, and detrital processing: Implications for ecosystem function in headwater streams. Hydrobiologia, 826: 233-246. Go to original source...
  47. Wagenmakers E.J., Farrell S. (2004): Aic model selection using akaike weights. Psychonomic Bulletin & Review, 11: 192-196. Go to original source... Go to PubMed...
  48. Wang X., Song H., Liu F., Quan X., Wang C. (2022): Timing of leaf fall and changes in litter nutrient concentration compromise estimates of nutrient fluxes and nutrient resorption efficiency. Forest Ecology and Management, 513: 120188. Go to original source...
  49. Wang Y.M., Yang J., Liu L.M.A., Yu Z. (2015): Quantifying the effects of geographical and environmental factors on distribution of stream bacterioplankton within nature reserves of Fujian, China. Environmental Science and Pollution Research, 22: 11010-11021. Go to original source... Go to PubMed...
  50. Wang Z., Zhao L., Bai Y., Li F., Hou J., Li X., Jiang Y., Deng Y., Zheng B., Yang W. (2021): Changes in plant debris and carbon stocks across a subalpine forest successional series. Forest Ecosystems, 8: 40. Go to original source...
  51. Wei S., Wu F., Hu W., Wang Y., Zhao Z., Peng Y., Ni X., Yue K. (2022): Dynamics of plant litter manganese and zinc storages in a middle subtropical forest headwater stream during raining season. Chinese Journal of Applied and Environmental Biology, 29: 632-638.
  52. Wei W., Zheng X., Guo H., Zhu L., Wu R., Zhang X., Wu F. (2023): Changes in acid-hydrolyzable carbohydrates and acid-unhydrolyzable residue during foliar litter decomposition of castanopsis carlesii and Chinese fir in a subtropical forest headwater stream. Journal of Soils and Sediments, 23: 1617-1627. Go to original source...
  53. Wipfli M.S., Richardson J.S., Naiman R.J. (2007): Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels. JAWRA Journal of the American Water Resources Association, 43: 72-85. Go to original source...
  54. Xu C., Lin C., Liu X., Xiong D., Lin W., Chen S., Xie J., Yang Y. (2017): Effects of forest conversion on concentrations and fluxes of dissolved organic carbon in runoff. Acta Ecologica Sinica, 37: 84-92. Go to original source...
  55. Yue K., Yang W., Peng Y., Zhang C., Huang C., Xu Z., Tan B., Wu F. (2016): Dynamics of multiple metallic elements during foliar litter decomposition in an alpine forest river. Annals of Forest Science, 73: 547-557. Go to original source...
  56. Yue K., Ni X., Fornara D.A., Peng Y., Liao S., Tan S., Wang D., Wu F., Yang Y. (2021): Dynamics of calcium, magnesium, and manganese during litter decomposition in alpine forest aquatic and terrestrial ecosystems. Ecosystems, 24: 516-529. Go to original source...
  57. Zhang C., Yang W., Yue K., Huang C., Peng Y., Wu F. (2015): Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alinine forest streams. The Journal of Applied Ecology, 26: 1601-1608.
  58. Zhang H., Yang W., Wang M., Liao S., Zhang C., Wu F. (2016): Carbon, nitrogen and phosphorus storage of woody debris in headwater streams in an alpine forest in upper reaches of the Minjiang river. Acta Ecologica Sinica, 36: 1967-1974. Go to original source...
  59. Zhang M., Cheng X., Geng Q., Shi Z., Luo Y., Xu X. (2019): Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 28: 1469-1486. Go to original source...
  60. Zhao Z., Wu F., Peng Y., Hedenec P., Wang Y., Hu W., Ni X., Yue K. (2023): Dynamics of heavy metals in the fine sediments from a subtropical forest headwater stream during a rainy season. Inland Waters, 13: 131-141. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.