Soil & Water Res., X:X | DOI: 10.17221/143/2025-SWR

Silver geochemistry and isotope systematics in Ag-rich mine tailings from NamibiaOriginal Paper

Aleš Vaněk ORCID...1, Maria Vaňková ORCID...2, Vojtěch Ettler ORCID...2, Martin Mihaljevič ORCID...2, Bohdan Kříbek ORCID...3, Petra Vokurková ORCID...1, Tereza Zádorová ORCID...1, Vít Penížek ORCID...1, Ondra Sracek ORCID...4, Benjamin Mapani ORCID...5
1 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic
3 Czech Geological Survey, Prague, Czech Republic
4 Department of Geology, Faculty of Science, Palacký University, Olomouc, Czech Republic
5 Namibia University of Science and Technology, Faculty of Engineering and Built Environment, Windhoek, Namibia

In this study, we present a detailed geochemical characterisation and stable isotope systematics of silver (Ag) in a mining waste facility at the Namib Lead & Zinc mine in Namibia (Africa). We examined a series of flotation tailings and ore minerals to address two principal questions: (1) the distribution, chemical form and leachability of Ag, and (2) the local Ag isotopic signature(s) and its variability in relation to Ag speciation in the solid phase, as well as the fate of stable Ag isotopes. Our findings reveal a significant correlation between Ag and Pb concentrations, indicating that galena is the primary Ag carrier. Most importantly, all mild extractions mobilised only a minimal amount of Ag (≤ 1 wt.% of the total amount). This suggests that most Ag is associated with geochemically stable phases, specifically sulphides, which are not subjected to leaching and/or intensive weathering. Unlike other isotope studies, the present research demonstrates a homogeneous Ag isotopic signal in the tailings and individual ore samples with an average δ109Ag value of ~ 0‰ (± 0.1, 2SD). Therefore, this study provides new knowledge and clearly supports the use of Ag isotopic data to track primary Ag sources globally, not only in Africa.

Keywords: critical raw material; extraction; galena; ore; sulphide

Received: December 7, 2025; Revised: December 17, 2025; Accepted: December 18, 2025; Prepublished online: January 14, 2026 

Download citation

Supplementary files:

Download fileVanek_ESM.pdf

File size: 458.38 kB

References

  1. Ash C., Borůvka L., Tejnecký V., Nikodem A., Šebek O., Drábek O. (2014): Potentially toxic element distribution in soils from the Ag-smelting slag of Kutná Hora (Czech Republic): Descriptive and prediction analyses. Journal of Geochemical Exploration, 144: 328-336. Go to original source...
  2. Basson I.J., McCall M.-J., Andrew J., Daweti E. (2018): Structural controls on mineralisation at the Namib Lead and Zinc Mine, Damara Belt, Namibia. Ore Geology Reviews, 95: 931-944. Go to original source...
  3. Bigalke M., Weyer S., Wilcke W. (2010): Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils. Soil Science Society of America Journal, 74: 60-73. Go to original source...
  4. Erickson R.J., Brooke L.T., Kahl M.D., Vende Venter F., Harting S.L., Markee T.P., Spehar R.L. (1998): Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environmental Toxicology and Chemistry, 17: 572-578. Go to original source...
  5. Ettler V., Raus K., Mihaljevič M., Kříbek B., Vaněk A., Penížek V., Sracek O., Koubová M., Mapani B. (2023): Bioaccessible metals in dust materials from non-sulfide Zn deposit and related hydrometallurgical operation. Chemosphere, 345: 140498. Go to original source... Go to PubMed...
  6. Ettler V., Křížová T., Mihaljevič M., Drahota P., Racek M., Kříbek B., Vaněk A., Penížek V., Zádorová T., Sracek O., Mapani B. (2025): Contaminant bioaccessibility in abandoned mine tailings in Namibia changes along a climatic gradient. Environmental Science: Processes & Impacts, 27: 1088-1102. Go to original source... Go to PubMed...
  7. Fabrega J., Luoma S.N., Tyler C.R., Galloway T.S., Lead J.R. (2011): Silver nanoparticles: Behavior and effects in the aquatic environment. Environment International, 37: 517-531. Go to original source... Go to PubMed...
  8. Galušková I., Borůvka L., Drábek O. (2011): Urban soil contamination by potentially risk elements. Soil and Water Research, 6: 55-60. Go to original source...
  9. Jacobson A.R., McBride M.B., Baveye P., Steenhuis T.S. (2005): Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment, 345: 191-205. Go to original source... Go to PubMed...
  10. Lohmeier S., Gallhofer D., Lottermoser B.G. (2024a): Geochemical and mineralogical characterization and resource potential of the Namib Pb-Zn tailings (Erongo Region, Namibia). The Journal of the Southern African Institute of Mining and Metallurgy, 124: 447-460. Go to original source...
  11. Lohmeier S., Gallhofer D., Lottermoser B.G. (2024b): Field-portable X-ray fluorescence analyzer for chemical characterization of carbonate-bearing base metal tailings: Case study from Namib Pb-Zn Mine, Namibia. The Journal of the Southern African Institute of Mining and Metallurgy, 124: 421-436. Go to original source...
  12. Mathur R., Arribas A., Megaw P., Wilson M., Stroup S., Meyer-Arrivillaga D., Arribas I. (2018): Fractionation of silver isotopes in native silver explained by redox reactions. Geochimica et Cosmochimica Acta, 224: 313-326. Go to original source...
  13. Milot J., Blichert-Toft J., Sanz M.A., Malod-Dognin C., Télouk P., Albarede F. (2022): Silver isotope and volatile trace element systematics in galena samples from the Iberian Peninsula and the quest for silver sources of Roman coinage. Geology, 50: 422-426. Go to original source...
  14. Padhye L.P., Jasemizad T., Bolan S., Tsyuskod O.V., Unrine J.M., Biswal B.K., Balasubramanian R., Zhang Y., Zhang T., Zhao J., Li Y., Rinklebe J., Wang H., Siddique K.H.M., Bolan N. (2023): Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Science of the Total Environment, 871: 161926. Go to original source... Go to PubMed...
  15. Pansu M., Gautheyrou J. (2006): Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Berlin, Heidelberg, Springer-Verlag: 167-219. Go to original source...
  16. Purcell T.W., Peters J.J. (1998): Sources of silver in the environment. Environmental Toxicology and Chemistry, 17: 539-546. Go to original source...
  17. Reimann C., Fabian K. (2022): Quantifying diffuse contamination: Comparing silver and mercury in organogenic and minerogenic soil. Science of the Total Environment, 832: 155065. Go to original source... Go to PubMed...
  18. Robson T.C., Braungardt C.B., Rieuwerts J., Worsfold P. (2014): Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environmental Pollution, 184: 283-289. Go to original source... Go to PubMed...
  19. Schönbachler M., Carlson R.W., Horan M.F., Mock T.D., Hauri E.H. (2007): High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: An evaluation of dry versus wet plasma. International Journal of Mass Spectrometry, 261: 183-191. Go to original source...
  20. Schönbachler M., Carlson R.W., Horan M.F., Mock T.D., Hauri E.H. (2008): Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system. Geochimica et Cosmochimica Acta, 72: 5330-5341. Go to original source...
  21. Sracek O., Ettler V., Kříbek B., Mihaljevič M., Mapani B., Penížek V., Zádorová T., Vaněk A. (2024): Characterization and stable isotopic fingerprinting of mine seepage in hyperarid environments: An example of the Namib Lead & Zinc mine, Namibia. Journal of Geochemical Exploration, 265: 107554. Go to original source...
  22. Vácha R., Vysloužilová M., Horváthová V., Čechmánková J. (2006): Risks following from husbandry on agricultural Soils in loaded areas of the Czech Republic. Soil and Water Research, 1: 108-116. Go to original source...
  23. Vaněk A., Vejvodová K., Mihaljevič M., Ettler V., Trubač J., Vaňková M., Goliáš V., Teper L., Sutkowska K., Vokurková P., Penížek V., Zádorová T., Drábek O. (2021): Thallium and lead variations in a contaminated peatland: A combined isotopic study from a mining/smelting area. Environmental Pollution, 290: 117973. Go to original source... Go to PubMed...
  24. Vaněk A., Vaňková M., Mihaljevič M., Ettler V., Drahota P., Vondrovicová L., Vokurková P., Galušková I., Zádorová T., Mathur R. (2023): Silver isotopes: A tool to trace smelter-derived contamination. Environmental Pollution, 337: 122557. Go to original source... Go to PubMed...
  25. Vejvodová K., Vaněk A., Mihaljevič M., Ettler V., Trubač J., Vaňková M., Drahota P., Vokurková P., Penížek V., Zádorová T., Tejnecký V., Pavlů L., Drábek O. (2020): Thallium isotopic fractionation in soil: The key controls. Environmental Pollution, 265: 114822. Go to original source... Go to PubMed...
  26. Wang D., Mathur R., Zheng Y., Wu H., Lv Y., Zhang G., Huan R., Yu M., Li Y. (2022): Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Insights from silver isotope fractionation of galena. Mineralium Deposita, 57: 701-724. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.