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Soil cover represents a continuous body that 
respects several natural gradients in the landscape, 
and which continuously changes along these gra-
dients. The ambiguity in soils can be a problem 
for the classification issues and thematic soil maps 

because one has to decide for explicit soil typo-
logical unit or the soil mapping unit. Soils usually 
show a diffuse spatial distribution that is hard to 
address in chorochromatic polygon soil maps. 
Burrough et al. (1997) describe the polygon soil 
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map as double crisp for it creates discontinuity in 
both taxonomical and geographical space. These 
authors suggest the continuous raster maps as a 
better alternative to mapping soils and soil proper-
ties. In this contribution, we test the method for 
mapping the soil cover with continuous raster 
maps in the study area, which occurs in the east-
ern part of the Považský Inovec Mountains, Slo-
vakia. The study is based on a systematic profile 
sampling of forest soils. To address soil fuzziness 
in the classification and to implement it into the 
soil maps, the model includes (i) fuzzy k-means 
classification (Bezdek et al. 1984) to identify soil 
typological units (STUs), and (ii) regression-krig-
ing (Odeh et al. 1994) to spatially interpret the 
fuzzy k-partition to STUs using predictor GIS 
variables. Fuzzy techniques are known to provide 
taxonomically interpretable data with the floating 
numeric format (e.g. McBratney & Moore 1985; 
De Gruijter & McBratney 1988; Burrough et 
al. 1997; De Gruijter et al. 1997; Hengl et al. 
2004; Lagacherie 2005), which can be treated as 
numeric indices of the spatial variability of soils. 
Fuzzy k-means method implements the theory 
of fuzzy sets (Zadeh 1965) and it partitions soil 
profiles into an explicit number of classes through 
the fuzzy k-partition, i.e. the set of membership 
values (MV). The method is used here to classify 
the soil-profile data into k STUs – each unit is 
characterised by a set of MVs (weights of belong-
ing to STU) for n soil profiles. The set of MVs to 
a particular STU represents the target variable 

for the model in this paper, which is mapped to 
continuous soil maps. The regression-kriging 
technique is used as the mapping agent to inter-
polate these MVs along GIS predictor variables 
into grid coverage. The approach presented uses 
terrain and remote sensing (RS) data as predic-
tors to support spatial interpretation of the fuzzy 
k-partition. Two basic requirements exist to use 
successfully GIS predictors – (i) they must closely 
determine, or copy, the distribution of the soil 
cover, and (ii) they must exist as high-resolution 
GIS information so that they can be used to predict 
the target variable at un-sampled locations. The 
spatial distribution of STU is then expressed as a 
membership map, i.e. the continuous coverage of 
MVs where the cell values range between 0 and 
1 (0 – no similarity between cell and centroid of 
particular STU, 1 – very great similarity between 
cell and centroid of particular STU).

Material and methods

Study area

The study area is situated in the eastern part of 
the Považský Inovec Mountains (Slovakia) and 
covers approximately 700 ha of forests (Figure 1). 
Soils on the summits and hillsides developed from 
weatherings of granitic rock and deluvium (Haplic 
Cambisols (Skeletic, Dystric)) or from the mixture 
of coarse and fine-earth materials at the foot of 
the hills (Haplic Stagnosols (Albic, Dystric) or 

Figure 1. The situation map of the study area with locations of soil profiles
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Stagnic Cambisols; nomenclature according to 
WRB by FAO 2006). The south-eastern part of 
the study area is built by loess of the Nitrianská 
pahorkatina hilly-country where acidic Albic Lu-
visols occur. The area belongs to the warm and 
moderately dry climatic region with mild winters 
and moderate humidity. Summer days count for 
less than 50, average July temperature is ≥ 16°C, 
and average January temperature above −3°C. The 
annual rainfall exceeds 700 mm in average (Lapin 
et al. 2002; SHMÚ – meteorological observa-
tory in Závada). The vegetation cover is created 
by acidophilous oak and oak-hornbeam forests 
(Čemanová et al. 2005).

Soil sampling and coding of soil profile 
properties

The pattern of soil sampling was designed as 
more or less systematic; only the extreme erosion 
grooves and creek alluvia were omitted from the 
sampling. The field sampling was designed so as 
to get the between-plot distances to approximately 
250 m, i.e. the diversity at shorter distances is not 
addressed in this study. Totally 90 soil profiles 
were sampled by the authors of this paper dur-
ing the period of 2004 and 2005. The individual 
plots were located by GPS in WGS 84 geographi-
cal coordinate system. The following attributes of 
soils were sampled: genetic features of horizons, 
horizon depth in cm, colour by Munsell charts for 
homogenised soil samples, percentage of oxidation 
and reduction features, sand and clay contents, and 
stoniness (for all genetic horizons; see Table 1). 
The attributes were quantified by different criteria, 
such as directly measured, estimated by percent-
age, or by interval scales. The soil attributes were 
encoded in a numerical matrix (90 profile × 73 at- 
tributes) as an input for the numerical classification. 
The numerical scheme respects two main principles: 
(i) depth of diagnostic horizons and (ii) vertically 
explicit stratification of soil attributes. All variants 
and sub-horizons of diagnostic horizons, which 
were identified by the field research, were aggre-
gated and cross-indexed by signatures of diagnostic 
horizons as shown in Table 1. The stratification of 
soil horizons was idealised to the sequence E-EB-
B1-B2-B3-BC, whereas the numerical soil proper-
ties were assigned to each horizon of the idealised 
sequence. If a horizon does not exist in the soil 
profile, each property is set to zero. A-horizon was 
omitted from the fuzzy k-means classification as it 

is very homogenous in its properties throughout 
the study area. No more than three B-horizons were 
ever noticed in each soil profile. The identified 
soil typological units were classified with respect 
to WRB system (FAO 2006). “Dystric” suffix was 
used for STUs in accordance with the information 
published by Čemanová et al. (2005).

Predictor GIS data 

The following GIS terrain and RS data were tested 
to be included into mapping: digital elevation model 
(DEM), slope in degrees (SLOPE), topography wet-
ness index (TWI), length-slope factor (LS), and 
normalised difference vegetation index (NDVI). All 
data were available in 10-m cell resolution. DEM, 
which represents a raster model of the elevation 
values, was interpolated by RBF from the elevation 
contour-line vertexes of topography maps 1:10 000 
using Geostatistical analyst for ArcGIS ( John-
ston et al. 2001). SLOPE and LS were calculated 
from DEM as described by Wilson and Gallant 
(2000). TWI, which reflects the tendency of water 
to accumulate at any point of the landscape, was 
calculated from DEM (see Wilson & Gallant 
2000), and it is assumed that soil transmitivity is 
constant throughout the catchment area. Landsat 
TM satellite images (source SSCRI Bratislava) from 
May were used to calculate NDVI as the normal-
ised quotient (Band 4 – Band 3)/(Band 4 + Band 3) 
(Maselli et al. 1998). With NDVI, we aim to gather 
the main differences in the vegetation cover, which 
usually indirectly reflects the soil properties. All 
topography analyses but DEM were calculated in 
the R open software (http://www.r-project.org). 
The basic statistics for the predictor GIS data are 
summarised in Table 2.

Model description

The model presented in the paper consists of 
two main components: (i) fuzzy k-means clas-
sifier and (ii) regression-kriging with predictor 
GIS variables. Fuzzy k-means classifier partitions 
multivariate soil objects into the given k classes, 
where the centroids of the classes are calculated by 
minimising the fuzzy partition error as proposed by 
Bezdek (1981). The fuzzy k-partition of MV(mij) 
follows the criteria given by statement (1):

 mij = ∈ [0,1]; ∑ mij = 1, i = 1 … n;  ∑ mij > 0, j = 1 … k  
	 (1)

  k

j=1

  n

i=1{ }
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where:
n	 – total number of plots,
k	 – number of classes.

We used FuzME programme (Minasny & Mc-
Bratney 2002) to execute fuzzy k-means with 
our data. Fuzzy k-means was calculated with the 
diagonal distance, with which the input data are 
transformed into equal variance. Although math-
ematical methods were suggested to optimise the 
parameters in the fuzzy k-means (e.g. McBratney 
& Moore 1985), we manually set the parameters 
as follows: fuzzy exponent to 1.8 and the number 
of classes to 3. Such parameterisation seems to 
yield spatially autocorrelated MVs for each of the 
output classes (STUs). Hereafter the fuzzy par-
tition MV(mij) to three STUs is considered as a 

target soil variable that inputs further procedures 
of the model.

Regression-kriging (Odeh et al. 1994) represents 
the spatial interpreter that combines multiple 
regression and kriging, and is used to interpolate 
MVs into membership maps. The modification 
that uses multiple linear regression (MLR) and 
punctual kriging is expressed by Eq. (2). In one 
case, the modification with multiple exponential 
regression (MER) was used in this paper. 

ˆ̂mj(s0) = ∑ βl × ql(s0) + ∑ wi(s0) × εj(si)	 (2)
where:
m̂j(s0)	– membership value of jth STU at unsampled loca-

tion s0 (located by X and Y coordinates in nodes 
of regular grid),

ql(s0)	 – the lth predictor GIS variable at location s0,

Table 1. List of diagnostic horizons, soil properties and their coding

Genetic soil horizons (their depth was sampled in cm)

A topsoil A horizon Bw cambic B-horizon

A_diff transitive A/x-horizon Bt argic B-horizon

Eg albic horizon with stagnic properties Bg B-horizon with stagnic properties

E albic horizon BC transitive B/C-horizon

EB transitive E/B-horizon

Scheme of idealised soil horizon stratification

B2 middle B-horizon* E Eluvial horizon

B3 bottom B-horizon** EB E/B-horizon

BC B/C-horizon B1 upper B-horizon

The list of numeric soil properties and their coding (x stands in for each horizon of idealised stratification):

Sg_x Stagnic features {0,1,2,3}1 Ox_x, Red_x oxidation and reduction features (%)

Lv_x Luvic features {0,1,2,3}2 Snd_x, Clay_x sand, clay (%)

Cb_x Cambic features {0,1,2,3}3 Stn_x Stoniness {1,2,3,4,5}5

X_x, Y_x, Z_x colour {X, Y, Z}4

*if soil has only one B-horizon, all parameters for B2 are identical to B1
**if soil has only one B-horizon, all parameters for B3 are identical to B1

if soil has only two B-horizons, all parameters for B3 are identical to B2
10 – without stagnic features, 1 – weakly developed stagnic features (e.g. Bw(g)-horizon), 2 – moderately developed stagnic 

features (e.g. Bwg-horizon), 3 – strongly developed stagnic features (Bg-horizons)
20 – without luvic features, 1 – weakly developed luvic features (e.g. Bw(t)-horizon), 2 – moderately developed luvic features 

(e.g. Bwt-horizon), 3 – strongly developed luvic features (Bt-horizons)
30 – without cambic features, 1 – weakly developed cambic features (e.g. Bg(w)-horizon), 2 – moderately developed cambic 

features (e.g. Bgw-horizon), 3 – strongly developed cambic features (Bw-horizons)
4Munsell hue, chroma and value data were transferred into CIELab coordinates as introduced by Melville & Atkinson 
(1985)

51 – without stones, 2 – less than 10%, 3 – 10 to 25%, 4 – 25 to 50%, 5 – more than 50%

  n

i=1

  p

l=1
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βl	 – parameter of lth predictor in MLR,
p	 – number of predictors used for jth STU,
εj(si)	– MLR residuum at sampled location si,
wi	 – weight of punctual kriging operator (for more 

details on punctual kriging see e.g. Burgess & 
Webster 1980).

Following the theory of kriging (e.g. Burgess & 
Webster 1980), the weights (wi) depend on the 
distances between the observations and the pre-
dicted location s0 and the spatial relations between 
the sampled data around the predicted location. 
Whereas geographic distances are determined by 
X and Y coordinates as Euclidean distance, spatial 
relations are described by the experimental semi-
variogram (Burgess & Webster 1980):

γ̂(h) =     
1

      ∑[ε(si) – ε(si+h)]2	 (3) 
           2d(h)

where:
γ̂(h) 		  – semi-variance,
h	 – separation lag-distance between locations si 

and si+h,
ε(si), ε(si+h)	– model residua at locations si and si+h,
d(h)		  – number of pairs at any separation distance h.

The semivariogram is a quantitative measure 
of how the variance between the sampled points 
is reduced as the separation distance decreases, 
and it can be modelled by some of the authorised 
semivariogram equations, such as gaussian or 
exponential (Webster & Oliver 2006). Finally, 
the weighting factors of Eq. (2) are estimated by 
solving the kriging equations (e.g. Webster & 
Oliver 2006). Both regression-kriging model (2) 
and semivariogram model (3) were solved in R open 
software (http://www.r-project.org; OLS for linear 

and exponential regression; punctual kriging). Tar-
get fuzzy k-partition to k STUs was interpolated to 
a grid with 10-m cell resolution. Alluvia of creeks 
were omitted from the model (refer to Figure 4) 
as they are not covered by the sampling, and the 
model is not calibrated for such areas.

The confusion index (CI) was used as the measure 
of ambiguity for the fuzzy partition (Burrough & 
McDonell 1998) in each cell of the GRID interpre-
tation. It is described as CI = 1 – (mmax – mmax–1), 
where mmax is the maximum membership value and 
mmax–1 is the next highest membership value in the 
cell. It is used to draw geographical boundaries 
(Burrough et al. 1997) between the analysed 
STUs as zones of confusion.

Results and discussion

Fuzzy k-means classification

The fuzzy k-mean classifier was parameterised 
to obtain the partition to totally three STUs. Fol-
lowing the output diagnostic features of centroids, 
the soils can be classified as Haplic Stagnosols 
(Albic, Dystric), Albic Stagnic Luvisols, and Haplic 
Cambisols (Skeletic, Dystric). Each STU is defined 
by the centroid profile (Table 3), which was built 
from the centroid values of the attributes in the 
classified attribute space. Albic Stagnic Luvisols 
are chiefly determined by argic Bt horizon de-
veloped from loess material. Some luvic features 
(luvic features of 1 or 2, see Table 1) occur also in 
deeper horizons of Stagnosols and Cambisols. This 
phenomenon relates to the relict processes that 
occurred in fragipan subsoil layer. Stagnosols are 
determined by hydromorphic Eg and Bg horizons 
with strongly developed stagnic features. Both 
oxidation and reduction signs occur also in some 

Table 2. Basic statistics for predictor GIS data

Predictor Mean Median Min. Max. Var. SD Skew. Kurt.

DEM 384.6 371.7 291.6 584.1 4030.2 63.5 1.03 0.82

SLOPE 7.7 6.1 1.0 21.4 25.7 5.1 0.93 0.01

TWI 6.9 7.0 5.7 8.6 0.5 0.7 0.21 −0.53

NDVI 0.155 0.152 0.107 0.263 0.001 0.025 1.08 3.38

LS 4.5 2.9 0.2 20.4 16.5 4.1 1.56 2.63

DEM – digital elevation model, SLOPE – slope in degrees, TWI – topography wetness index, NDVI – normalised difference 
vegetation index, LS – length-slope factor

  d

i=1
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Luvisol and Cambisol profiles, but they are not as 
dominant as in Stagnosols. Cambisol creates variable 
STU in the study area, for which cambic Bw horizon 
seems diagnostic. It has developed mostly from re-
cent deluvium strata and shows high stoniness. The 
whole information on the centroids is readable in 
Table 3. The set of MVs demonstrates the fuzzy-like 
boundaries between the individual STUs (Figure 2). 
Diffuse and broad taxonomical boundaries occur 
especially between Cambisols and Stagnosols.

Regression-kriging interpolation

The deterministic component of regression-krig-
ing (refer to the right side of Eq. (2) left to + sign) 
describes the distribution of MVs over the study 
area as the MLR or MER functions of the predictor 
GIS variables. As expected, the fuzzy k-partition 
shows deterministic responses to the predictor 
GIS data (see Table 4). The distribution of MVs 
to Stagnosols along DEM, SLOPE, TWI, and LS 

Table 3. Statistically central profiles of soil typological units; the result of fuzzy k-means classification

Haplic Stagnosols (Albic, Dystric)

A 0–2 cm, topsoil A horizon

A/E 2–8 cm, transitive A/E-horizon

Eg 8–38 cm, albic horizon with stagnic properties (stagnic features Sg_E ~ 3, cambic features Cb_E ~ 0, luvic 
features Lv_E ~ 0), colour (X_E, Y_E, Z_E): 0.8049, 1.1097, 5.9355; 5% of oxidation features (Ox_E), 74% of 
reduction features (Red_E), 17% of clay (Clay_E), 45% of sand (Snd_E), < 10% of skelet (Stn_E ~ 2), 

E/B 38–60 cm, transitive E/B-horizon (stagnic features Sg_EB ~ 3, cambic features Cb_EB ~ 0, luvic features 
Lv_EB ~ 0), colour (X_EB, Y_EB, Z_EB): 1.0816, 1.4899, 5.3624; 14% of oxidation features (Ox_EB), 62% of 
reduction features (Red_EB), 25% of clay (Clay_EB), 36% of sand (Snd_EB), 10–25% of skelet (Stn_EB ~ 3),

Bg 60–95 cm, B-horizon with stagnic features (stagnic features Sg_B1 ~ 3, cambic features Cb_B1 ~ 0, luvic fea-
tures Lv_B1 ~ 0), colour (X_B1, Y_B1, Z_B1): 1.4174, 1.9502, 4.2124; 32% of oxidation features (Ox_B1), 66% 
of reduction features (Red_B1), 32% of clay (Clay_B1), 37% of sand (Snd_B1), 25–50% of skelet (Stn_B1 ~ 4)

Albic Stagnic Luvisols

A 0–5 cm, topsoil A horizon

E 5–36 cm, albic E-horizon (stagnic features Sg_E ~ 0, cambic features Cb_E ~ 0, luvic features Lv_E ~ 1), colour 
(X_E, Y_E, Z_E): 2.0157, 2.8621, 5.6579; 1% of oxidation features (Ox_E), 1% of reduction features (Red_E), 
16% of clay (Clay_E), 39% of sand (Snd_E), < 10% of skelet (Stn_E ~ 2),

E/B 36–47 cm, transitive E/B-horizon (stagnic features Sg_EB ~ 0, cambic features Cb_EB ~ 0, luvic features 
Lv_EB ~ 1), colour (X_EB, Y_EB, Z_EB): 1.5502, 2.2232, 4.0739; 7% of oxidation features (Ox_EB), 12% of 
reduction features (Red_EB), 15% of clay (Clay_EB), 24% of sand (Snd_EB), < 10% of skelet (Stn_EB ~ 2),

Btg 47–90 cm, argic Bt-horizon with moderate stagnic features (stagnic features Sg_B1 ~ 2, cambic features Cb_B1 
~ 0, luvic features Lv_B1 ~ 3), colour (X_B1, Y_B1, Z_B1): 2.9172, 3.9962, 5.2670; 51% of oxidation features 
(Ox_B1), 29% of reduction features (Red_B1), 28% of clay (Clay_B1), 33% of sand (Snd_B1), < 10 % of skelet 
(Stn_B1 ~ 2)

Haplic Cambisols (Skeletic, Dystric)

A 0–8 cm, topsoil A horizon

Bw 8–96 cm, cambic B-horizon

B1 upper Bw-horizon (stagnic features Sg_B1 ~ 0, cambic features Cb_B1 ~ 3, luvic features Lv_B1 ~ 0), colour 
(X_B1, Y_B1, Z_B1): 2.2906, 3.3372, 5.4582; 23% of clay (Clay_B1), 39% of sand (Snd_B1), 10–25% of skelet 
(Stn_B1 ~ 3),

B2 bottom Bw-horizon with signs of agric horizon (stagnic features Sg_B2 ~ 0, cambic features Cb_B2 ~ 3, luvic 
features Lv_B2 ~ 1), colour (X_B2, Y_B2, Z_B2): 3.0738, 4.1229, 5.1540; 3% of oxidation features (Ox_B2), 1% of 
reduction features (Red_B2), 26% of clay (Clay_B2), 41% of sand (Snd_B2), 25–50% of skelet (Stn_B2 ~ 4)
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is significantly described by the linear regression 
model, where R2 reaches up to 37% of variance 
with SLOPE and TWI. Also the fuzzy k-partition 
to Cambisols is significantly defined by the linear 
regression model; DEM is the best explanatory vari-
able (R2 is about 56% of variance). Both Cambisols 
and Stagnosols seem to copy well the relief-based 
parameters in the study area. On the other hand, 
the fuzzy k-partition to Luvisols can not be statisti-
cally predicted by any of parameters but DEM, to 
which it shows exponential response (exponential 
regression model; R2 = 44%). The data in Table 4 
prove that a kind of deterministic spatial trend 
occurs in the data (linear or exponential), which 
is a function of the profile location on the relief 
gradient. It also shows that NDVI predictor is the 
weakest one of the GIS data used and is suboptimal 
to predict the soil cover in this study.

Since DEM-based relief parameters are strongly 
autocorrelated in the study area, their use in MLR or 
MER yields no significant improvement compared 
to simple regressions with the most explanatory 
GIS parameter (statistical test not shown here). 
Therefore, the single linear or exponential re-
gression with the most explanatory variable was 
used instead of MLR/MER in Eq. (2). So SLOPE 

was used with MVs to Haplic Stagnosols (Albic, 
Dystric) and DEM with MVs to Haplic Cambisols 
(Skeletic, Dystric) and Albic Stagnic Luvisols.

The regression yields residua that are positive 
or negative depending on overestimating or un-
derestimating the fuzzy k-partition at particular 
locations of the profile in Eq. (2). The estimation 
of the residua at the unsampled location (refer 
to the right side of equation (2) right to + sign) 
involves defining the semivariogram (Eq. (3)) from 
the located residua that helps to define weights, 
with which the residua of the individual soil profiles 
input the kriging estimator of Eq. (2). The spatial 
dependency in the residua of STUs is depicted 
by bounded semivariogram models (Figure 3). 
Here, the semi-variance depends on the distances 
between the locations of the profiles and not on 
the absolute geographic position, in contrast to 
the previous part of the model. It can be seen that 
the fuzzy k-partition residua demonstrate spatial 
autocorrelation for all STUs. The error of the 
spatial distribution model is caused by the nug-
get variance which is the semivariance at the zero 
between-sample distance. In the model, it repre-
sents the variation within the shortest sampling 
interval. The portion of scale (c1 parameter of the 

Figure 2. The distribution of membership values for soil typological units in the set of profiles (white triangles – Albic 
Stagnic Luvisols, dark squares – Haplic Stagnosols (Albic, Dystric), white circles – Haplic Cambisols (Skeletic, Dyst-
ric)); soil profiles order at X-axis is sorted to draw an optimal shape of membership data
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semivariogram model, see Figure 3) and nugget 
variance (c0 parameter of the same model) defines 
the strength of the semivariogram model and, 
consequently, the validity of the residuum estima-
tion. Figure 3 indicates that the models used for 
Cambisol and Luvisol STUs are more explanatory 
than the model used for Stagnosol residua which 
has a higher nugget than scale variance. Hence, 
the estimation of the residua for Stagnosols will 
be less accurate in this case. The semivariogram 
models analysed (Figure 3) were used to optimise 
the weights for kriging estimator of Eq. (2) for each 
unsampled location of the output map. Model (2) 
was solved for the grid with 10-m cell size where 
the extrapolation up to 250 m outside the sampling 
area (which is an average distance between the 
locations of soil profiles) was allowed so that the 
validity of the model might be fulfilled.

Final membership maps of the STUs studied 
(Figure 4) visualise the results of the model, which 
is the spatial distribution of STUs. It is obvious 
from the maps that the STUs studied geographi-
cally closely abut and it would be problematic to 

state other boundary than the diffuse one between 
these types of soils. The map of confusion index 
(Figure 4d) identifies where the diffuse bounda-
ries occur (the highest confusion), and where 
distinct areas of the individual STUs are located. 
The fuzzy maps presented give a reliable picture 
of the STU distribution in the study area. Haplic 
Cambisols (Skeletic, Dystric) occur on convex 
geomorphologic units, whereas some luvic and 
stagnic features occur in Cambisols at the feet of 
hills (diffuse transition to Luvisols and Stagnosols). 
Stagnosols and Luvisols occur at the bottom parts 
of hillsides where the mountains meet the hilly 
country region. Haplic Stagnosols (Albic, Dystric) 
occur mostly in submontane depressions with 
seasonal surface water logging.

Cross validation

We used the cross-validation method (e.g. John-
ston et al. 2001) to validate the model. The member-
ship values of the individual profiles were correlated 
to the modelled estimations of MVs at the same 

Table 4. Regression analysis with predictor GIS data (N = 90)

Soil type Predictor Transformation Model R2 (%) R P-level B0 B1 C

Haplic 
Stagnosols 
(Albic, 
Dystric)

DEM log10 LR 23.8 0.49 +++ 4.048 −1.432 −

SLOPE log10 LR* 36.9 0.61 +++ 0.665 −0.394 −

TWI no LR 36.8 0.61 +++ −0.826 0.169 −

NDVI no LR 8.2 0.29 +++ 0.704 −2.255 −

LS log10(1 + x) LR 33.3 0.58 +++ 0.599 −0.387 −

Haplic 
Cambisols 
(Skeletic, 
Dystric) 

DEM log10 LR* 56.2 0.75 +++ −6.666 2.796 −

SLOPE log10 LR 46.7 0.68 +++ 0.101 0.563 −

TWI no LR 47.7 0.69 +++ 2.250 −0.245 −

NDVI no LR 14.3 0.38 +++ −0.044 3.798 −

LS log10(1 + x) LR 42.7 0.65 +++ 0.192 0.556 −

Albic 
Stagnic 
Luvisols

DEM log10 EXP* 43.8 0.66 +++ 44.188 −18.177 −0.019

SLOPE log10 EXP 8.3 0.29 − 2.985 −0.009 −19.551

TWI no EXP 8.9 0.30 − 3.333 0.003 −28.450

NDVI no EXP 5.1 0.23 − 0.058 −13.951 −0.027

LS log10(1 + x) EXP 7.8 0.28 − 2.756 −0.011 −15.532

LR (linear regression): Y = β0 + β1x, EXP (exponential regression): Y = C + exp(β0 + β1x), R2: coefficient of determination, 
R – Pearson’s correlation coefficient , (+++) significant at α = 0.01, (−) not significant at α = 0.01; DEM – digital elevation 
model, SLOPE – slope in degrees, TWI – topography wetness index, NDVI – normalised difference vegetation index, 
LS – length-slope factor; *variable and regression type used for regression-kriging 
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profile locations. When running cross-validation, 
the profile at the just-analysed location was omit-
ted from the model, so only (N – 1) profiles input 
the model at each of 90 soil profile locations. The 
cross-validation yields statistical data as shown in 
Table 5; Pearson’s correlation is higher than 0.75 for 
all STUs. Addressing the noisy character of the soil 
data, the model appeared as a good spatial predictor 
and mapping agent for all STUs studied. It needs 
to be mentioned that this approach validates the 
model in its sub-optimal use, where the distance 
between the estimated cell in the map and the closest 
neighbouring profile will be about twice as long than 
in the case of the optimally parameterised model. 
Therefore, the correlation obtained by cross-vali-
dation may be assumed as slightly pessimistic with 
respect to the digital outputs.

The derived membership maps to STUs can 
slightly deviate from the assumption that the 
sum of MVs through STUs in each cell is equal 
to one (Eq. (1)) because each map is independ-
ently smoothed by the mapping algorithm. Fur-
ther improvements can be therefore expected in 
the compositional parameterisation of the model 
(implementing compositional kriging). In order to 
visualise the results consistently, MV coverages 
were rescaled to meet the assumption of Eq. (1).

Conclusions

The paper offers a way to map digitally the 
ambiguous soil data in terms of their classifica-
tion, and to analyse the relations between STUs 
and the digitally-described landscape variables. 

Figure 3. Semivariogram models for regression residua 
for soil typological units; exponential model: γ(h) = c0 + 
c1(1 – exp(–3|h|/r)), gaussian model: γ(h) = c0 + c1(1 – 
exp(–3(|h|/r)2)), where c0 is nugget and c1 is scale.
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Figure 4. Membership maps of soil typological units
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It shows that the systematic sampling of the soil 
profiles provides data that include a high degree 
of fuzziness in its attribute dataset, and which can 
be treated as fuzzy sets. It is also demonstrated 
that fuzzy k-partition to classified STUs can be 
optimised in such way as to produce smoothly 
geographically distributed data that yield signifi-
cant correlations with the terrain variables. The 
predictor GIS-based data can support the spatial 
interpretation of MVs. The fuzzy partition data 
allow to include geostatistical methods, such as 
regression-kriging in this case, for their spatial 
interpretation. Confusion index spatially allocates 
the ambiguity in the classification obtained and 
draws an idea where the soil-profile data overlap 
the classification used. It seems to be a suitable 
technique also to mark geographical boundaries 
between the STUs studied as zones of confusion. 
We can conclude the following:

(i) – It appears that different STUs are mapped 
with different validity, which is dependant on 
the calibration of both regression and kriging 
components. To keep the validity of the maps for 
STUs, which demonstrate weak relations to the 
terrain-based variables (and are therefore highly 
sensitive to kriging component), a high sampling 
density is required.

(ii) – Membership maps slightly deviate from 
the assumption that the sum of MVs in each cell is 
equal to 1 as each map is independently smoothed 
by the mapping algorithm. Further improvements 
can be therefore expected in parameterisation of 
the model for all STUs in one run fulfilling the 
assumption of the compositional nature of MVs.

(iii) – The algorithm is not applicable for alluvia 
in the study area since it was not calibrated for such 
conditions. To solve this lack, additional sampling 
and model adjustments will be needed.

The fuzzy approach with the soil data could offer 
a wide range of interpretations for the soil and land-
scape studies (see e.g. Grunwald 2006). It provides 

opportunities to describe digitally soils and could 
potentially lead to spatial modelling of soils and 
landscapes. Moreover, the model produces results 
which can easily meet other landscape data in a 
GRID-based platform (e.g. various RS data), which 
are commonly used to analyse the landscape.
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