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Abstract: The paper introduces a method of digital mapping of spatial distribution of soil typological units.
It implements fuzzy k-means to classify the soil profile data (study area from the Povazsky Inovec Mountains,
Slovakia) and regression-kriging with the selected digital terrain and remote sensing data to draw membership
maps of soil typological units. Totally three soil typological units were identified: Haplic Cambisols (Skeletic,
Dystric), Albic Stagnic Luvisols, and Haplic Stagnosols (Albic, Dystric). We analysed the membership values
to these units with respect to terrain and remote sensing data. The membership values appeared as spatially
smoothly dependant on the terrain gradients (linearly or exponentially) whereas the residua showed spatial auto-
correlation. Based on regression and kriging analyses, the regression-kriging model was successfully deployed to
draw raster membership maps. These maps yield coefficients of determination between R? = 56% (Albic Stagnic
Luvisols) to R? = 79% (Haplic Cambisols (Skeletic, Dystric)) when evaluated by cross validation. The grid-based
continuous soil map represents an alternative to the classical polygon soil maps and can offer a wide range of
interpretations for landscape studies.

Keywords: fuzzy k-means; regression-kriging; digital landscape data; grid interpretation; spatial distribution; soil
classification

Soil cover represents a continuous body that because one has to decide for explicit soil typo-
respects several natural gradients in the landscape, logical unit or the soil mapping unit. Soils usually
and which continuously changes along these gra-  show a diffuse spatial distribution that is hard to
dients. The ambiguity in soils can be a problem address in chorochromatic polygon soil maps.
for the classification issues and thematic soil maps BURROUGH et al. (1997) describe the polygon soil
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map as double crisp for it creates discontinuity in
both taxonomical and geographical space. These
authors suggest the continuous raster maps as a
better alternative to mapping soils and soil proper-
ties. In this contribution, we test the method for
mapping the soil cover with continuous raster
maps in the study area, which occurs in the east-
ern part of the Povazsky Inovec Mountains, Slo-
vakia. The study is based on a systematic profile
sampling of forest soils. To address soil fuzziness
in the classification and to implement it into the
soil maps, the model includes (i) fuzzy k-means
classification (BEZDEK et al. 1984) to identify soil
typological units (STUs), and (i) regression-krig-
ing (ODEH et al. 1994) to spatially interpret the
fuzzy k-partition to STUs using predictor GIS
variables. Fuzzy techniques are known to provide
taxonomically interpretable data with the floating
numeric format (e.g. MCBRATNEY & MOORE 1985;
DE GRUIJTER & MCBRATNEY 1988; BURROUGH et
al. 1997; DE GRUDTER et al. 1997; HENGL et al.
2004; LAGACHERIE 2005), which can be treated as
numeric indices of the spatial variability of soils.
Fuzzy k-means method implements the theory
of fuzzy sets (ZADEH 1965) and it partitions soil
profiles into an explicit number of classes through
the fuzzy k-partition, i.e. the set of membership
values (MV). The method is used here to classify
the soil-profile data into kK STUs — each unit is
characterised by a set of MVs (weights of belong-
ing to STU) for # soil profiles. The set of MVs to
a particular STU represents the target variable
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for the model in this paper, which is mapped to
continuous soil maps. The regression-kriging
technique is used as the mapping agent to inter-
polate these MVs along GIS predictor variables
into grid coverage. The approach presented uses
terrain and remote sensing (RS) data as predic-
tors to support spatial interpretation of the fuzzy
k-partition. Two basic requirements exist to use
successfully GIS predictors — (i) they must closely
determine, or copy, the distribution of the soil
cover, and (ii) they must exist as high-resolution
GIS information so that they can be used to predict
the target variable at un-sampled locations. The
spatial distribution of STU is then expressed as a
membership map, i.e. the continuous coverage of
MVs where the cell values range between 0 and
1 (0 — no similarity between cell and centroid of
particular STU, 1 — very great similarity between
cell and centroid of particular STU).

MATERIAL AND METHODS
Study area

The study area is situated in the eastern part of
the Povazsky Inovec Mountains (Slovakia) and
covers approximately 700 ha of forests (Figure 1).
Soils on the summits and hillsides developed from
weatherings of granitic rock and deluvium (Haplic
Cambisols (Skeletic, Dystric)) or from the mixture
of coarse and fine-earth materials at the foot of
the hills (Haplic Stagnosols (Albic, Dystric) or

| g 9 e ey
% Sollprafiles o oo

Figure 1. The situation map of the study area with locations of soil profiles
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Stagnic Cambisols; nomenclature according to
WRB by FAO 2006). The south-eastern part of
the study area is built by loess of the Nitrianskd
pahorkatina hilly-country where acidic Albic Lu-
visols occur. The area belongs to the warm and
moderately dry climatic region with mild winters
and moderate humidity. Summer days count for
less than 50, average July temperature is > 16°C,
and average January temperature above —3°C. The
annual rainfall exceeds 700 mm in average (LAPIN
et al. 2002; SHMU — meteorological observa-
tory in Zavada). The vegetation cover is created
by acidophilous oak and oak-hornbeam forests
(CEMANOVA et al. 2005).

Soil sampling and coding of soil profile
properties

The pattern of soil sampling was designed as
more or less systematic; only the extreme erosion
grooves and creek alluvia were omitted from the
sampling. The field sampling was designed so as
to get the between-plot distances to approximately
250 m, i.e. the diversity at shorter distances is not
addressed in this study. Totally 90 soil profiles
were sampled by the authors of this paper dur-
ing the period of 2004 and 2005. The individual
plots were located by GPS in WGS 84 geographi-
cal coordinate system. The following attributes of
soils were sampled: genetic features of horizons,
horizon depth in cm, colour by Munsell charts for
homogenised soil samples, percentage of oxidation
and reduction features, sand and clay contents, and
stoniness (for all genetic horizons; see Table 1).
The attributes were quantified by different criteria,
such as directly measured, estimated by percent-
age, or by interval scales. The soil attributes were
encoded in a numerical matrix (90 profile x 73 at-
tributes) as an input for the numerical classification.
The numerical scheme respects two main principles:
(i) depth of diagnostic horizons and (ii) vertically
explicit stratification of soil attributes. All variants
and sub-horizons of diagnostic horizons, which
were identified by the field research, were aggre-
gated and cross-indexed by signatures of diagnostic
horizons as shown in Table 1. The stratification of
soil horizons was idealised to the sequence E-EB-
B1-B2-B3-BC, whereas the numerical soil proper-
ties were assigned to each horizon of the idealised
sequence. If a horizon does not exist in the soil
profile, each property is set to zero. A-horizon was
omitted from the fuzzy k-means classification as it

is very homogenous in its properties throughout
the study area. No more than three B-horizons were
ever noticed in each soil profile. The identified
soil typological units were classified with respect
to WRB system (FAO 2006). “Dystric” suffix was
used for STUs in accordance with the information
published by CEMANOVA et al. (2005).

Predictor GIS data

The following GIS terrain and RS data were tested
to be included into mapping: digital elevation model
(DEM), slope in degrees (SLOPE), topography wet-
ness index (TWI), length-slope factor (LS), and
normalised difference vegetation index (NDVI). All
data were available in 10-m cell resolution. DEM,
which represents a raster model of the elevation
values, was interpolated by RBF from the elevation
contour-line vertexes of topography maps 1:10 000
using Geostatistical analyst for ArcGIS (JoHN-
STON et al. 2001). SLOPE and LS were calculated
from DEM as described by WiLsoN and GALLANT
(2000). TWI, which reflects the tendency of water
to accumulate at any point of the landscape, was
calculated from DEM (see WILSON & GALLANT
2000), and it is assumed that soil transmitivity is
constant throughout the catchment area. Landsat
TM satellite images (source SSCRI Bratislava) from
May were used to calculate NDVTI as the normal-
ised quotient (Band 4 — Band 3)/(Band 4 + Band 3)
(MASELLI et al. 1998). With NDVI, we aim to gather
the main differences in the vegetation cover, which
usually indirectly reflects the soil properties. All
topography analyses but DEM were calculated in
the R open software (http://www.r-project.org).
The basic statistics for the predictor GIS data are
summarised in Table 2.

Model description

The model presented in the paper consists of
two main components: (i) fuzzy k-means clas-
sifier and (ii) regression-kriging with predictor
GIS variables. Fuzzy k-means classifier partitions
multivariate soil objects into the given k classes,
where the centroids of the classes are calculated by
minimising the fuzzy partition error as proposed by
BezDEK (1981). The fuzzy k-partition of MV(mij)
follows the criteria given by statement (1):

{my=€ OIS my=1i=1..m Tm;>0j=1..4
o1 i1
(1)
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where:
n - total number of plots,
k — number of classes.

We used FuzME programme (MINASNY & Mc-
BRATNEY 2002) to execute fuzzy k-means with
our data. Fuzzy k-means was calculated with the
diagonal distance, with which the input data are
transformed into equal variance. Although math-
ematical methods were suggested to optimise the
parameters in the fuzzy k-means (e.g. MCBRATNEY
& MOoORE 1985), we manually set the parameters
as follows: fuzzy exponent to 1.8 and the number
of classes to 3. Such parameterisation seems to
yield spatially autocorrelated MVs for each of the
output classes (STUs). Hereafter the fuzzy par-
tition MV(ml.l,) to three STUs is considered as a

target soil variable that inputs further procedures
of the model.

Regression-kriging (ODEH et al. 1994) represents
the spatial interpreter that combines multiple
regression and kriging, and is used to interpolate
MVs into membership maps. The modification
that uses multiple linear regression (MLR) and
punctual kriging is expressed by Eq. (2). In one
case, the modification with multiple exponential
regression (MER) was used in this paper.

)4
ﬁqj(so) = El B, x q,(sy) +L‘Z1 w(s,) X sl.(sl.)

(2)

where:

”C’,‘(So) — membership value of /" STU at unsampled loca-
tion s, (located by X and Y coordinates in nodes
of regular grid),

q,(s,) — the I*" predictor GIS variable at location o

Table 1. List of diagnostic horizons, soil properties and their coding

Genetic soil horizons (their depth was sampled in cm)

A topsoil A horizon Bw cambic B-horizon

A_diff transitive A/x-horizon Bt argic B-horizon

Eg albic horizon with stagnic properties Bg B-horizon with stagnic properties
E albic horizon BC transitive B/C-horizon

EB transitive E/B-horizon

Scheme of idealised soil horizon stratification

B2 middle B-horizon* E Eluvial horizon

B3 bottom B-horizon** EB E/B-horizon

BC B/C-horizon B1 upper B-horizon

The list of numeric soil properties and their coding (x stands in for each horizon of idealised stratification):

Sg_x Stagnic features {0,1,2,3}!
Lv_x Luvic features {0,1,2,3}?
Cb_x Cambic features {0,1,2,3}3

X_x, Y x,Z_x colour{X,Y,Z}*

Ox_x, Red_x oxidation and reduction features (%)
Snd_x, Clay_x  sand, clay (%)
Stn_x Stoniness {1,2,3,4,5}°

*if soil has only one B-horizon, all parameters for B2 are identical to B1

**if soil has only one B-horizon, all parameters for B3 are identical to B1

if soil has only two B-horizons, all parameters for B3 are identical to B2

10 — without stagnic features, 1 — weakly developed stagnic features (e.g. Bw(g)-horizon), 2 — moderately developed stagnic

features (e.g. Bwg-horizon), 3 — strongly developed stagnic features (Bg-horizons)

20 — without luvic features, 1 — weakly developed luvic features (e.g. Bw(t)-horizon), 2 — moderately developed luvic features

(e.g. Bwt-horizon), 3 — strongly developed luvic features (Bt-horizons)

30 — without cambic features, 1 — weakly developed cambic features (e.g. Bg(w)-horizon), 2 — moderately developed cambic

features (e.g. Bgw-horizon), 3 — strongly developed cambic features (Bw-horizons)

4“Munsell hue, chroma and value data were transferred into CIELab coordinates as introduced by MELVILLE & ATKINSON

(1985)

51 — without stones, 2 — less than 10%, 3 — 10 to 25%, 4 — 25 to 50%, 5 — more than 50%
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B, — parameter of ™ predictor in MLR,

p - number of predictors used for j" STU,

sj(si) — MLR residuum at sampled location s,

w, — weight of punctual kriging operator (for more
details on punctual kriging see e.g. BURGESS &
WEBSTER 1980).

Following the theory of kriging (e.g. BURGESS &
WEBSTER 1980), the weights (w,) depend on the
distances between the observations and the pre-
dicted location s, and the spatial relations between
the sampled data around the predicted location.
Whereas geographic distances are determined by
X and Y coordinates as Euclidean distance, spatial
relations are described by the experimental semi-
variogram (BURGESs & WEBSTER 1980):

d

y(h) = —— X[e(s) - e(s;, )1 (3)
2d(h) =

where:

y(h) — semi-variance,

h — separation lag-distance between locations s;

ands,,,

&(s), &(s;,,) — model residua at locations s, and s
d(h)

i+l

— number of pairs at any separation distance /.

The semivariogram is a quantitative measure
of how the variance between the sampled points
is reduced as the separation distance decreases,
and it can be modelled by some of the authorised
semivariogram equations, such as gaussian or
exponential (WEBSTER & OLIVER 2006). Finally,
the weighting factors of Eq. (2) are estimated by
solving the kriging equations (e.g. WEBSTER &
OLIVER 2006). Both regression-kriging model (2)
and semivariogram model (3) were solved in R open
software (http://www.r-project.org; OLS for linear

Table 2. Basic statistics for predictor GIS data

and exponential regression; punctual kriging). Tar-
get fuzzy k-partition to k STUs was interpolated to
a grid with 10-m cell resolution. Alluvia of creeks
were omitted from the model (refer to Figure 4)
as they are not covered by the sampling, and the
model is not calibrated for such areas.

The confusion index (CI) was used as the measure
of ambiguity for the fuzzy partition (BURROUGH &
McDoNELL 1998) in each cell of the GRID interpre-
tation. It is described as CI =1 - (m_, —m . ),
where m___is the maximum membership value and
m__ . is the next highest membership value in the
cell. It is used to draw geographical boundaries
(BURROUGH et al. 1997) between the analysed
STUs as zones of confusion.

RESULTS AND DISCUSSION
Fuzzy k-means classification

The fuzzy k-mean classifier was parameterised
to obtain the partition to totally three STUs. Fol-
lowing the output diagnostic features of centroids,
the soils can be classified as Haplic Stagnosols
(Albic, Dystric), Albic Stagnic Luvisols, and Haplic
Cambisols (Skeletic, Dystric). Each STU is defined
by the centroid profile (Table 3), which was built
from the centroid values of the attributes in the
classified attribute space. Albic Stagnic Luvisols
are chiefly determined by argic Bt horizon de-
veloped from loess material. Some luvic features
(luvic features of 1 or 2, see Table 1) occur also in
deeper horizons of Stagnosols and Cambisols. This
phenomenon relates to the relict processes that
occurred in fragipan subsoil layer. Stagnosols are
determined by hydromorphic Eg and Bg horizons
with strongly developed stagnic features. Both
oxidation and reduction signs occur also in some

Predictor Mean Median Min. Max. Var. SD Skew. Kurt.
DEM 384.6 371.7 291.6 584.1 4030.2 63.5 1.03 0.82
SLOPE 7.7 6.1 1.0 21.4 25.7 5.1 0.93 0.01
TWI 6.9 7.0 5.7 8.6 0.5 0.7 0.21 -0.53
NDVI 0.155 0.152 0.107 0.263 0.001 0.025 1.08 3.38
LS 4.5 2.9 0.2 20.4 16.5 4.1 1.56 2.63

DEM - digital elevation model, SLOPE — slope in degrees, TWI — topography wetness index, NDVI — normalised difference

vegetation index, LS — length-slope factor
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Table 3. Statistically central profiles of soil typological units; the result of fuzzy k-means classification

Haplic Stagnosols (Albic, Dystric)
A 0-2cm, topsoil A horizon

A/E 2-8 cm, transitive A/E-horizon

Eg 8-38 cm, albic horizon with stagnic properties (stagnic features Sg_E ~ 3, cambic features Cb_E ~ 0, luvic
features Lv_E ~ 0), colour (X_E, Y_E, Z_E): 0.8049, 1.1097, 5.9355; 5% of oxidation features (Ox_E), 74% of
reduction features (Red_E), 17% of clay (Clay_E), 45% of sand (Snd_E), < 10% of skelet (Stn_E ~ 2),

E/B 38-60 cm, transitive E/B-horizon (stagnic features Sg_EB ~ 3, cambic features Cb_EB ~ 0, luvic features
Lv_EB ~ 0), colour (X_EB, Y_EB, Z_EB): 1.0816, 1.4899, 5.3624; 14% of oxidation features (Ox_EB), 62% of
reduction features (Red_EB), 25% of clay (Clay_EB), 36% of sand (Snd_EB), 10-25% of skelet (Stn_EB ~ 3),

Bg 60-95 cm, B-horizon with stagnic features (stagnic features Sg_B1 ~ 3, cambic features Cb_B1 ~ 0, luvic fea-
tures Lv_B1 ~ 0), colour (X_B1,Y_B1, Z_B1): 1.4174, 1.9502, 4.2124; 32% of oxidation features (Ox_B1), 66%
of reduction features (Red_B1), 32% of clay (Clay_B1), 37% of sand (Snd_B1), 25-50% of skelet (Stn_B1 ~ 4)

Albic Stagnic Luvisols
A 0-5cm, topsoil A horizon

E 5-36 cm, albic E-horizon (stagnic features Sg_E ~ 0, cambic features Cb_E ~ 0, luvic features Lv_E ~ 1), colour
(X_E, Y_E, Z_E): 2.0157, 2.8621, 5.6579; 1% of oxidation features (Ox_E), 1% of reduction features (Red_E),
16% of clay (Clay_E), 39% of sand (Snd_E), < 10% of skelet (Stn_E ~ 2),

E/B 36-47 cm, transitive E/B-horizon (stagnic features Sg_EB ~ 0, cambic features Cb_EB ~ 0, luvic features
Lv_EB ~ 1), colour (X_EB, Y_EB, Z_EB): 1.5502, 2.2232, 4.0739; 7% of oxidation features (Ox_EB), 12% of
reduction features (Red_EB), 15% of clay (Clay_EB), 24% of sand (Snd_EB), < 10% of skelet (Stn_EB ~ 2),

Btg 47-90 cm, argic Bt-horizon with moderate stagnic features (stagnic features Sg_B1 ~ 2, cambic features Cb_B1
~ 0, luvic features Lv_B1 ~ 3), colour (X_B1, Y_B1, Z_B1): 2.9172, 3.9962, 5.2670; 51% of oxidation features
(Ox_B1), 29% of reduction features (Red_B1), 28% of clay (Clay_B1), 33% of sand (Snd_B1), < 10 % of skelet
(Stn_B1 ~ 2)

Haplic Cambisols (Skeletic, Dystric)
A 0-8 cm, topsoil A horizon
Bw 8-96 cm, cambic B-horizon

Bl upper Bw-horizon (stagnic features Sg_B1 ~ 0, cambic features Cb_B1 ~ 3, luvic features Lv_B1 ~ 0), colour
(X_B1, Y_B1, Z_B1): 2.2906, 3.3372, 5.4582; 23% of clay (Clay_B1), 39% of sand (Snd_B1), 10-25% of skelet
(Stn_B1 ~ 3),

B2  bottom Bw-horizon with signs of agric horizon (stagnic features Sg_B2 ~ 0, cambic features Cb_B2 ~ 3, luvic
features Lv_B2 ~ 1), colour (X_B2,Y_B2,Z_B2):3.0738, 4.1229, 5.1540; 3% of oxidation features (Ox_B2), 1% of
reduction features (Red_B2), 26% of clay (Clay_B2), 41% of sand (Snd_B2), 25-50% of skelet (Stn_B2 ~ 4)

Luvisol and Cambisol profiles, but they are not as
dominant as in Stagnosols. Cambisol creates variable
STU in the study area, for which cambic Bw horizon
seems diagnostic. It has developed mostly from re-
cent deluvium strata and shows high stoniness. The
whole information on the centroids is readable in
Table 3. The set of MVs demonstrates the fuzzy-like
boundaries between the individual STUs (Figure 2).
Diffuse and broad taxonomical boundaries occur
especially between Cambisols and Stagnosols.
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Regression-kriging interpolation

The deterministic component of regression-krig-
ing (refer to the right side of Eq. (2) left to + sign)
describes the distribution of MVs over the study
area as the MLR or MER functions of the predictor
GIS variables. As expected, the fuzzy k-partition
shows deterministic responses to the predictor
GIS data (see Table 4). The distribution of MVs
to Stagnosols along DEM, SLOPE, TWI, and LS
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Membership value

Soil profile

Figure 2. The distribution of membership values for soil typological units in the set of profiles (white triangles — Albic
Stagnic Luvisols, dark squares — Haplic Stagnosols (Albic, Dystric), white circles — Haplic Cambisols (Skeletic, Dyst-

ric)); soil profiles order at X-axis is sorted to draw an optimal shape of membership data

is significantly described by the linear regression
model, where R? reaches up to 37% of variance
with SLOPE and TWI. Also the fuzzy k-partition
to Cambisols is significantly defined by the linear
regression model; DEM is the best explanatory vari-
able (R? is about 56% of variance). Both Cambisols
and Stagnosols seem to copy well the relief-based
parameters in the study area. On the other hand,
the fuzzy k-partition to Luvisols can not be statisti-
cally predicted by any of parameters but DEM, to
which it shows exponential response (exponential
regression model; R? = 44%). The data in Table 4
prove that a kind of deterministic spatial trend
occurs in the data (linear or exponential), which
is a function of the profile location on the relief
gradient. It also shows that NDVI predictor is the
weakest one of the GIS data used and is suboptimal
to predict the soil cover in this study.

Since DEM-based relief parameters are strongly
autocorrelated in the study area, their use in MLR or
MER yields no significant improvement compared
to simple regressions with the most explanatory
GIS parameter (statistical test not shown here).
Therefore, the single linear or exponential re-
gression with the most explanatory variable was
used instead of MLR/MER in Eq. (2). So SLOPE

was used with MVs to Haplic Stagnosols (Albic,
Dystric) and DEM with MVs to Haplic Cambisols
(Skeletic, Dystric) and Albic Stagnic Luvisols.
The regression yields residua that are positive
or negative depending on overestimating or un-
derestimating the fuzzy k-partition at particular
locations of the profile in Eq. (2). The estimation
of the residua at the unsampled location (refer
to the right side of equation (2) right to + sign)
involves defining the semivariogram (Eq. (3)) from
the located residua that helps to define weights,
with which the residua of the individual soil profiles
input the kriging estimator of Eq. (2). The spatial
dependency in the residua of STUs is depicted
by bounded semivariogram models (Figure 3).
Here, the semi-variance depends on the distances
between the locations of the profiles and not on
the absolute geographic position, in contrast to
the previous part of the model. It can be seen that
the fuzzy k-partition residua demonstrate spatial
autocorrelation for all STUs. The error of the
spatial distribution model is caused by the nug-
get variance which is the semivariance at the zero
between-sample distance. In the model, it repre-
sents the variation within the shortest sampling
interval. The portion of scale (c1 parameter of the
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Table 4. Regression analysis with predictor GIS data (N = 90)

Soil type Predictor Transformation Model R?(%) R P-level BO B1 C
DEM log,, LR 23.8 0.49 et 4.048  -1.432 -
Haplic SLOPE log,, LR* 36.9 0.61 ot 0.665  -0.394 -
Stagnosols
, TWI no LR 36.8 0.61 et -0.826  0.169 -
(Albic,
Dystric) NDVI no LR 8.2 0.29 et 0.704  -2.255 -
LS log, (1 + x) LR 33.3 0.58 +++ 0.599 -0.387 -
DEM log,, LR* 56.2 0.75 et -6.666  2.796 -
Haplic SLOPE log,, LR 46.7 0.68 ++ 0.101  0.563 -
Cambisol
AMDISOI no LR 47.7 0.69 s+ 2250 -0.245 -
(Skeletic,
Dystric) NDVI no LR 14.3 0.38 e+ -0.044  3.798 -
LS log, (1 + x) LR 42.7 0.65 +++ 0.192 0.556 -
DEM log,, EXP* 438 0.66 et 44.188 -18.177 -0.019
Albic SLOPE log,, EXP 8.3 0.29 - 2985  -0.009 -19.551
Stagnic TWI no EXP 8.9 0.30 - 3.333 0.003  -28.450
Luvisols NDVI no EXP 5.1 0.23 - 0058 -13.951 -0.027
LS log,,(1 + x) EXP 7.8 0.28 - 2.756  -0.011 -15.532

LR (linear regression): Y = B, + B,x, EXP (exponential regression): ¥ = C + exp(B, + B,x), R%: coefficient of determination,

R — Pearson’s correlation coefficient , (+++) significant at « = 0.01, (-) not significant at « = 0.01; DEM - digital elevation

model, SLOPE - slope in degrees, TWI — topography wetness index, NDVI — normalised difference vegetation index,

LS - length-slope factor; *variable and regression type used for regression-kriging

semivariogram model, see Figure 3) and nugget
variance (cO parameter of the same model) defines
the strength of the semivariogram model and,
consequently, the validity of the residuum estima-
tion. Figure 3 indicates that the models used for
Cambisol and Luvisol STUs are more explanatory
than the model used for Stagnosol residua which
has a higher nugget than scale variance. Hence,
the estimation of the residua for Stagnosols will
be less accurate in this case. The semivariogram
models analysed (Figure 3) were used to optimise
the weights for kriging estimator of Eq. (2) for each
unsampled location of the output map. Model (2)
was solved for the grid with 10-m cell size where
the extrapolation up to 250 m outside the sampling
area (which is an average distance between the
locations of soil profiles) was allowed so that the
validity of the model might be fulfilled.

Final membership maps of the STUs studied
(Figure 4) visualise the results of the model, which
is the spatial distribution of STUs. It is obvious
from the maps that the STUs studied geographi-
cally closely abut and it would be problematic to
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state other boundary than the diffuse one between
these types of soils. The map of confusion index
(Figure 4d) identifies where the diffuse bounda-
ries occur (the highest confusion), and where
distinct areas of the individual STUs are located.
The fuzzy maps presented give a reliable picture
of the STU distribution in the study area. Haplic
Cambisols (Skeletic, Dystric) occur on convex
geomorphologic units, whereas some luvic and
stagnic features occur in Cambisols at the feet of
hills (diffuse transition to Luvisols and Stagnosols).
Stagnosols and Luvisols occur at the bottom parts
of hillsides where the mountains meet the hilly
country region. Haplic Stagnosols (Albic, Dystric)
occur mostly in submontane depressions with
seasonal surface water logging.

Cross validation

We used the cross-validation method (e.g. JoHN-
STON et al. 2001) to validate the model. The member-
ship values of the individual profiles were correlated
to the modelled estimations of MVs at the same



Soil & Water Res., 2, 2007 (4): 123—134

0.05
0.045
0.04
0.035
§ 0.03
L]
g 0.025
=
@
¢y 002
pos Moded: Gawssian
Nugget (cO): 0.014
oo Scale (¢1): 0.023
Range (r): 200
0.00% MNugget'Scale: 0.61
o
1] 200 400 600 BOO 1000 1200 1400 1600 1800
Lag Distance /m
001E
0016
0014
0012
g
5 om
"
-
E 0.008
7]
0.006
Model: Exponential
Mugget (c0); 0.0045
0,004
Scale (c1). 0.009
Range (r) 600
0oz Nugget'Scale: 0.50
o
u 200 400 600 BOO 1000 1200 1400 1600 1800

Lag Distance /m

profile locations. When running cross-validation,
the profile at the just-analysed location was omit-
ted from the model, so only (N — 1) profiles input
the model at each of 90 soil profile locations. The
cross-validation yields statistical data as shown in
Table 5; Pearson’s correlation is higher than 0.75 for
all STUs. Addressing the noisy character of the soil
data, the model appeared as a good spatial predictor
and mapping agent for all STUs studied. It needs
to be mentioned that this approach validates the
model in its sub-optimal use, where the distance
between the estimated cell in the map and the closest
neighbouring profile will be about twice as long than
in the case of the optimally parameterised model.
Therefore, the correlation obtained by cross-vali-
dation may be assumed as slightly pessimistic with
respect to the digital outputs.
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Figure 3. Semivariogram models for regression residua
for soil typological units; exponential model: y(h) = ¢, +
¢,(1 — exp(-3]h|/r)), gaussian model: y(h) = ¢, + ¢,(1 -

exp(-3(|h|/r)?), where c, is nugget and c, is scale.

0

The derived membership maps to STUs can
slightly deviate from the assumption that the
sum of MVs through STUs in each cell is equal
to one (Eq. (1)) because each map is independ-
ently smoothed by the mapping algorithm. Fur-
ther improvements can be therefore expected in
the compositional parameterisation of the model
(implementing compositional kriging). In order to
visualise the results consistently, MV coverages
were rescaled to meet the assumption of Eq. (1).

CONCLUSIONS

The paper offers a way to map digitally the
ambiguous soil data in terms of their classifica-
tion, and to analyse the relations between STUs
and the digitally-described landscape variables.
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Figure 4. Membership maps of soil typological units
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Table 5. Cross-validation statistics with soil typological units

Soil type Model N R? (%) R P-level
Haplic Stagnosols (Albic, Dystric) LIN 90 56.8 0.75 +++
Haplic Cambisols (Skeletic, Dystric) LIN 90 79.4 0.89 +++
Albic Stagnic Luvisols LIN 90 55.6 0.75 +4++

LIN — linear regression model, N — number of observations, R? — coefficient of determination, R — Pearson’s correlation

coefficient, (+++) significant at a« = 0.01

It shows that the systematic sampling of the soil
profiles provides data that include a high degree
of fuzziness in its attribute dataset, and which can
be treated as fuzzy sets. It is also demonstrated
that fuzzy k-partition to classified STUs can be
optimised in such way as to produce smoothly
geographically distributed data that yield signifi-
cant correlations with the terrain variables. The
predictor GIS-based data can support the spatial
interpretation of MVs. The fuzzy partition data
allow to include geostatistical methods, such as
regression-kriging in this case, for their spatial
interpretation. Confusion index spatially allocates
the ambiguity in the classification obtained and
draws an idea where the soil-profile data overlap
the classification used. It seems to be a suitable
technique also to mark geographical boundaries
between the STUs studied as zones of confusion.
We can conclude the following:

(i) — It appears that different STUs are mapped
with different validity, which is dependant on
the calibration of both regression and kriging
components. To keep the validity of the maps for
STUs, which demonstrate weak relations to the
terrain-based variables (and are therefore highly
sensitive to kriging component), a high sampling
density is required.

(ii) — Membership maps slightly deviate from
the assumption that the sum of MVs in each cell is
equal to 1 as each map is independently smoothed
by the mapping algorithm. Further improvements
can be therefore expected in parameterisation of
the model for all STUs in one run fulfilling the
assumption of the compositional nature of MVs.

(iii) — The algorithm is not applicable for alluvia
in the study area since it was not calibrated for such
conditions. To solve this lack, additional sampling
and model adjustments will be needed.

The fuzzy approach with the soil data could offer
a wide range of interpretations for the soil and land-
scape studies (see e.g. GRUNWALD 2006). It provides

opportunities to describe digitally soils and could
potentially lead to spatial modelling of soils and
landscapes. Moreover, the model produces results
which can easily meet other landscape data in a
GRID-based platform (e.g. various RS data), which
are commonly used to analyse the landscape.
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