
	 17

Soil & Water Res., 4, 2009 (1): 17–27

Application of Neuro-Genetic Algorithm to Determine 
Reservoir Response in Different Hydrologic Adversaries

Mrinmoy Majumder, Rabindra Nath Barman, Pankaj Kr. Roy,  
Bipal Kr. Jana and Asis Mazumdar

School of Water Resources Engineering, Jadavpur University, Kolkata, India

Abstract: The hydrologic adversaries like high magnitude storms, extreme dryness, aridity, more than normal 
demand for water etc. often cause a huge stress on the storage structures such as reservoirs and check dams. 
This stress implies a lot of adverse effects on the adjacent population. One of the major causes of floods and 
droughts were due to the mis-management of stored water during hydrologic adversaries. The present study 
tries to estimate the distribution of the surplus water in the case of hydrologic adversaries. In this regard, two 
years of daily discharge data of one of the reservoirs, Panchet, of the river Damodar was randomly selected and 
grouped into six categories based on their magnitude. Three neural models were built. One out of the three was 
selected due to better performance validating criteria. The behaviour of the inputs in the case of hydrologic 
abnormality was configured with respect to the available historical records and applied to the selected model. 
The output would give the magnitude of surplus in the case of the pre-configured hydrologic adversaries. Ac-
cording to the results, the Panchet reservoir could not mitigate the stress created due to the applied hydrologic 
adversaries. The study was conducted with a single reservoir and one major hydrologic pattern of the decade. 
A more detailed study with the help of this approach could further improve the model estimation.
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The decision support system (DSS) of a reservoir 
controles the amount of water supplied to different 
sectors like industry, domestic sector, agriculture 
etc. The risk from such decisions becomes more 
pronounced during severe hydrologic conditions 
such as a high demand in dry conditions, a low 
demand in wet conditions, an abnormal inflow, 
an excessive evaporation due to extremely dry 
climate, etc. The reservoirs become highly stressed 
during such adverse conditions and the reservoir 
management can avoid or induce at that time 
severe damages. Coulibaly et al. (2005) sug-
gested a combined model approach to improve 
the forecast of the reservoir inflow and found that 
different approaches will work better for differ-
ent watersheds, lead times, and types of events. 
This conclusion was supported by WMO (1992), 

Singh (1995), Singh and Woolhiser (2002), 
etc. One day ahead stream-flow forecasting by 
multiple-layer perceptron (MLP) networks at a 
daily time step was studied for 47 watersheds by 
Anctil and Rat (2005). Karaboga et al. (2004) 
proposed a control method based on fuzzy logic 
for the real-time operation of spillway gates of 
a reservoir during any flood of any magnitude 
up to the probable maximum flood. Ahmed and 
Sarma (2005) determined the efficiency of neuro-
modelling algorithms on generation of synthetic 
stream flow. Majumder et al. (2007) proposed 
the pattern for maximum water use for the River 
Damodar catchments with the help of back propa-
gation neural networks.

India’s irrigation development in this century, 
and particularly after the independence, consists 
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of many large storage based systems. However, in 
the pre-British period in India, there were practi-
cally no large reservoir projects. Even in the British 
period, a few storage structures were built only at 
the beginning of this century. Post-independence 
India, however, has seen more than 60% of ir-
rigation budgets going for Major and Medium 
(M & M) projects. India, with a geographical area 
of 3.3 million square kilometers, experiences ex-
tremes of climate. The annual average rainfall in 
the country is about 1170 mm, which is equivalent 
to nearly 4000 mm. India’s irrigated agriculture 
sector has been fundamental to India’s economic 
development and poverty alleviation. Some 28% of 
India’s Gross Domestic Product (GDP) and 67% of 
employment are based on agriculture. Agriculture 
is the primary source of livelihood in rural areas, 
which account for 75% of India’s population and 
80% of its poor. And, in turn, irrigation is the base 
for about 56%, possibly more, of total agricultural 
output. The rapid expansion of irrigation and 
drainage infrastructure has been one of India’s 
major achievements (Lahiri-Dutt 2000).

The present study tries to estimate the impact 
of hydrologic adversaries on the selected reservoir 
operation. The reservoir surplus was used to show 
the impact on the reservoir operation. Reservoir 
inflow and outflow along with the water supplied 
in different sectors were treated as the input. The 
pattern was encoded in three neural models and 
these models were used to estimate the surplus 
for the conditions observed in the periods of hy-
drological extremities.

Study area

In this context, in the present study was selected 
the Panchet reservoir of the river Damodar, a 
multi-reservoir network which is controlled by 
Damodar Valley Corporation (DVC). DVC was 
India’s first river development project and second 
large-scale river project of the last century after 
the Tennessee Valley Authority (TVA) in USA. 
The British administrator, W.W. Hunter, in his 
Statistical Account of Bengal described Damodar 
floods as “rainwater rushing off the hills through 
innumerable channels into the river bed with such 
great force and suddenness that the water rose to 
form a gigantic head wave of great breadth and 
sometimes rising up to 1.5 metres in height”. The 
uncontrolled part of the catchment, comprising 
about 3200 km2, extends from below Maithon 

and Panchet dams to Durgapur Barrage for about 
60 km had faced many high intensity storms and 
plays a major role in the agricultural develop-
ment of the area. The construction of additional 
dams in the upper reaches (i.e. above Panchet and 
Mithon) contributes significantly to the runoff. 
The problem of the distribution of stored water 
is always pronounced in DVC catchment. When 
there is enough storage, the supplied water is 
adequate but in the case of adverse conditions, 
i.e. when the storage becomes too high or low, the 
distribution of the surplus water becomes the main 
cause of hydrologic devastations (Lahiri-Dutt 
2000). A brief description of the DVC catchment 
is given next.

Description of the river basin 

The Damodar river which lies between the lati-
tudes 23°30'N and 24°19'N and longitudes 85°31'E 
and 87°21'E, originates from the Palamu Hills of 
Chota Nagpur at an elevation of about 610 m above 
the mean sea level. It flows in south easterly direc-
tion, entering the deltaic plains below Raniganj 
in Burdwan district of West Bengal, India. Near 
Burdwan, the river abruptly changes its course 
to southerly direction and joins the Hoogli river 
about 48 km below Kolkata. The slope of the river 
bed during the first 241 km is about 1.89 m/km. 
 During the next 161 km it is about 0.57 m/km, fol-
lowed by about 0.19 m/km in subsequent 145 km. 
The river is fed by six streams of which the princi-
pal tributary, the Barakar, joins it where the river 
Damodar emerges from the Palamu Hills. The 
four main multipurpose reservoirs are located at 
Tilaiya, Konar, Maithon, Panchet, and Barrage at 
Durgapur was commissioned during 1953–1959. 
Another tributary, the Khudia, whose catchment 
is intercepted neither by Maithon nor Panchet 
reservoirs, joins the Damodar near its confluence 
with the Barakar. In the plains, the river splits into 
several channels and ultimately joins the rivers 
Roopnarayan & Hoogli. The total length of the river 
is about 541 km. The total catchment area of the 
river is 28 015 km2 of which 10 985 km2 lies under 
Panchet (Konar – 997 km2, Tenughat – 4500 km2, 
and Panchet 5488 km2) and 6293 km2 under Maithon 
(Tilaiya – 984 km2, and Maithon – 5309 km2).

Climate of the river basin

Moderate winters and hot and humid summers 
characterise the climate of the area. The mean 
annual rainfall in different catchments of the Da-
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modar valley is 126 cm in Barakar, 127.2 cm in 
Damodar, and 132.9 cm in the lower valley. 82% of 
the mean annual rainfall occurs during the four 
monsoon months from June to September. The 
mean daily temperature varies from 40°C to below 
20°C in winters. The rainfall in this area during 
the monsoon season is mainly due to the passage 
of depressions and low pressure over and near the 
area and the active monsoon conditions due to the 
accentuation of the seasonal trough.

Geo-morphology

The upper portion of the catchment consists of 
rough, hilly regions, whereas the lower portion is 
of flat deltaic plane, nature.

Figure 1a shows the network diagram of the River 
Damodar catchment in three parts. 1st part depicts 
the connectivity between the Panchet and Maithon 
sub-catchment with Durgapur Barrage. 2nd and 3rd 
part demonstrates the hydrologic modeling tree 
for the two (Panchet and Maithon) sub-catchment. 
In Figure 1b the Torrential bed slope represents 
deciduous forest, high slope and semi-pervious 
soil class. Denuding bed slope represents medium 
slope, non-arable land type with a soil class not 
conducive for agriculture. Flood-prone alluvial and 
deltaic bed slope represents flood prone regions of 
the basin with clayey and silty-loam soil.

The Panchet reservoir considered in the study 
falls within the Denuding (D) bed slope region.

Figure 1a. Schematic diagram of hydrologic modeling 
tree of river Damodar

Figure 1b. Map showing the bed slope varia-
tion of the river basin
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Control structures
DVC has a network of four dams – Tilaiya and 

Maithon on the river Barakar, Panchet on the river 
Damodar, and Konar on the river Konar. Besides, 
Durgapur barrage and canal network, handed over 
to Government of West Bengal in 1964, remained a 
part of the total system of water management. Four 
multipurpose dams were constructed during the 
period of 1948 to 1959, namely Maithon, Panchet, 
Tilaiya, and Konar reservoirs. Out of these four 
reservoirs, the first three are used for hydropower 
generation. Konar is used only for agricultural 
purposes of the adjacent area. Though the water 
supplied for hydropower generation is allowed to 
return back to the reservoir, a small percentage 
of water gets diverted or evaporated. Panchet has 
a capability of 80 MW of power generation and 
a part of the supplied water is used up for this 
purpose (Roy et al. 2004).

Objective

The objective of the present study is to estimate 
the distribution of the surplus water in the case of 
various hydrologic adversaries. The study helps 
to identify whether or not the impact of the ad-
versaries could be mitigated by a reservoir. In this 
regard, two years of daily discharge data of one of 
the reservoirs of the DVC system was randomly 
selected and grouped into six categories based on 
their magnitude of discharge. Three neural models 
were built. One of the three models was selected 
because it showed the most consistent validation 
performance. The behaviour of the inputs in the 
case of hydrologic abnormality was configured 
with respect to the available historical records 
(CWC 2005) and applied to the selected model. 
The output would give the magnitude of surplus 
in the case of the pre-configured hydrologic ad-
versaries. According to the results, the Panchet 
reservoir would be in high stress when the applied 
hydrologic adversaries should happen in reality.

Data description

Daily reservoir discharge data, i.e. inflow, out-
flow, reservoir storage, and water supply data, i.e. 
water used for irrigation, industry, and domestic 
use of Panchet reservoir for the year 1997–1998, 
were considered as the input and water surplus, 
calculated with the help of water supply dataset 
was considered for output. The water surplus of 

the reservoir was calculated using the formula 
prescribed by Majumder et al. (2007).

The correlation coefficient of the output data 
series with the input data sets were –0.74, –0.76, 
–0.74, 0.04, 0.58, 0.47, and 0.04, respectively, for 
water used in domestic, industrial, and hydropower 
sectors; storage, inflow, and outflow. The mean 
values for the output and input data series were 
found to be equal to 49.44 and 1.54, 13.58, 26.34, 
270.18, 14.74, 15.15, 142.48, respectively, for the 
surplus and water used in domestic, industrial, and 
hydropower sectors; storage, inflow, outflow, and 
water level. The output data series were found to 
be platykurtic (–1.54) and kurtosis of the input 
datasets were derived as 6.01, 0.80, –0.93, 683.95, 
8.38, 21.32, and 683.95, respectively, for water used 
in domestic, industrial, and hydropower sectors; 
storage, inflow, outflow, and water level.

The variation of the output data series was 43.71 
whereas that of the input data series were 1.74, 
14.66, 28.01, 906.25, 24.48, 28.36, and 477.90, re-
spectively, for water used in domestic, industrial, 
and hydropower sectors; storage, inflow, outflow, 
and water level data series.

According to the correlation measurements, the 
water use was found to be inversely related to the 
water surplus whereas the inflow, outflow, and 
level were found to be positively correlated with 
the output, although this relationship was not very 
pronounced. The central tendency measurements 
were found to be highly varied for the water level 
and storage. Other input data sets and the output 
showed moderate variations.

The output data series after clusterisation showed 
a standard deviation and mean value equal to 15.05 
and 32.37 units, respectively.

Methodology

Artificial neural network

An artificial neural network (ANN) is a flexible 
mathematical structure that is capable of identify-
ing complex nonlinear relationships between the 
input and output data sets. The ANN model of a 
physical system can be considered with n input 
neurons (x1, x2...xn), h hidden neurons (z1, z2....
zn), and m output neurons (y1, y2...yn). Let tj be 
the bias for neuron zj and fk for neuron yk. Let wij 
be the weight of the connection from neuron xi 
to zj and beta the weight of the connection zj to 
yk. The function that ANN calculates is:
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natural genetic and natural selection. The basic 
elements of natural genetics – reproduction, cross-
over, and mutation – are used in the genetic search 
procedure. A GA can be considered to consist of 
the following steps (Burn & Yulianti 2001):
(1) Select an initial population of strings.
(2) Evaluate the fitness of each string.
(3) Select strings from the current population to 

mate.
(4) Perform crossover (mating) for the selected 

strings.
(5) Perform mutation for selected string elements.
(6) Repeat steps 2–5 for the required number of 

generations.
Genetic algorithm is a robust method of searching 

the optimum solution to complex problems like 
the selection of optimal network topology where 
it is difficult or impossible to test for optimality. 
The basics of GA have already been discussed by 
many authors like Wang (1991), Wardlaw & 
Sharif (1999), Ahmed and Sarma (2005). Hence, 
the details of the basic procedures of GA are not 
focused on in the present literature.

Training phase

To encapsulate the desired input-output rela-
tionship, the weights are adjusted and applied to 
the network until the desired error is achieved. 
This is called as “training the network”. There is 
innumerable number of “training the network” 
algorithms, among which back-propagation (ASCE 
2000b) is mostly preferred. In the present study, 
Batch Back Propagation (BBP), Incremental Back 
Propagation (IBP), and Levenberg-Marquardt 
(LM), each of them derived from the basic back-
propagation algorithms, are used as the training 
algorithm in this present study.

BBP is an advanced variant of Back Propagation 
where the network weights update takes place 
once per iteration.

IBP is a variation of the Back Propagation where 
the network weights are updated after presenting 
each case from the training subset, rather than 
once per iteration. This is an originally invented 
variant of back propagation and sometimes referred 
to as Standard Back Propagation.

LM (Kisi 2007) is an advanced non-linear op-
timisation algorithm. It is the fastest algorithm 
available for multi-layer perceptrons. However, 
it has the following restrictions: 

It can only be used on networks with a single 
output unit. 

yk = gA (Σzibjk + fk) … (j = 1 – h)	  (1)

In which,

zj = fA (Σxiwij + tj) … (i = 1 – n) 	  (2)

where:
gA, fA	 – activation functions (Sudheer 2005)

The development of an artificial neural network, 
as prescribed by ASCE (2000a) follows the follow-
ing basic rules,
(1) Information must be processed at many single 

elements called nodes.
(2) Signals are passed between nodes through con-

nection links and each link has an associated 
weight that represents its connection strength.

(3) Each of the nodes applies a non-linear transfor-
mation called activation function to its net input 
to determine its output signal.

The numbers of neurons contained in the input 
and output layers are determined by the number 
of input and output variables of a given system. 
The size or number of neurons of a hidden layer 
is an important consideration when solving the 
problems using multilayer feed-forward networks. 
If there are fewer neurons within the hidden 
layer, there may not be enough opportunity for 
the neural network to capture the intricate rela-
tionships between the indicator parameters and 
computed output parameters. Too many hidden 
layer neurons not only require a large computa-
tional time for accurate training, but may also 
result in overtraining. A neural network is said 
to be “over-trained” when the network focuses on 
the characteristics of the individual data points 
rather than just capturing the general patterns 
present in the entire training set. The network 
building procedure is divided into 3 phases which 
are described further.

Network building procedure

Selection of network topology

Neural networks can be of different types, like 
feed forward, radial basis function, time lag de-
lay etc. The type of the network is selected with 
respect to the knowledge of the input and output 
parameters and their relationship. Once the type of 
network is selected, the selection of network topol-
ogy is the next concern. Trial and error method is 
generally used for this purpose but many studies 
now prefer the application of genetic algorithm 
(Ahmed & Sarma 2005). Genetic algorithms (GA) 
are search algorithms based on the mechanics of 
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It can only be used with small networks (a few 
hundred weights) because its memory requirements 
are proportional to the square of the number of 
weights in the network.

Testing phase

After training is completed, some portion of the 
available historical dataset is fed to the trained 
network and the known output is estimated out 
of them. The estimated values are compared with 
the target output to compute the mean square 
error (MSE). If the value of MSE is less than 1%, 
the network is said to be sufficiently trained and 
ready for the estimation. The dataset is also used 
for cross-validation to prevent over-training dur-
ing the training phase (Sudheer 2005).

In the present study, the IBP, BBP, and LM al-
gorithms are used to train the model. The best 
model was selected with the help of the perfor-
mance validation criteria as explained in the next 
section.

Evaluation of the network

The accuracy of the results obtained from the 
network is assessed by comparing its response 
with the validation set. The commonly used evalu-
ation criteria include the correct classification rate 
(CCR), correlation coefficient (R) and Standard 
Deviation (SD) (Bhatt et al. 2007). 

CCR = ((Tpc – Opc)/Tpc) × 100  	  (3)

R = [Σ((Tp – Tm)(Op – Om))/(Σ(Tp – Tm)2 			

       Σ(Op – Om)2)½]	  (4)

SD = 
Σ (Tn – Tn)2

	  (5) 
          

         n

where:
Tpc		  – group of the actual dataset
Opc		  – estimated group
Tp		  – target group for the pth pattern
Op		  – estimated group for the pth pattern
Tm, Om	 – mean target and estimated groups, respec-

tively, and n is the total number of patterns.

CCR is used in the classification tasks as a quali-
tative characteristic. This rate is calculated by di-
viding the number of correctly recognised records 
by the total number of records. CCR is measured 
in relative units or in percents. R is the degree of 
correlation between two variables. In the present 

study, the actual and predicted data series were 
grouped. That is why Spearman’s Formula for Rank 
Correlation (Das 1991) was used to measure the 
relationship between the two data series. SD is the 
measure of deviation of the estimated value from 
the target output. As both of the data series were 
in a composite condition, the SD for the present 
study is calculated with the help of the formula 
given next:

 	  (6)

where:
σTp	 – denotes SD 
fT	 – group frequency
N	 – total number of data in the series

The same formula is calculated for Op. (Das 1991) 
(Eq. (6)). The SD for the actual and predicted series 
is found out by dividing SD of the actual series 
and SD of the predicted series. A perfect match 
between the observed data and model simulations 
is obtained when SD approaches 0.0.

RESULT AND DISCUSSION

Model development

Three neural models were developed from the 
reservoir dataset within the selected time scale, 
among which the model with the smallestt MSE, 
highest R, and minimum SD was selected for the 
simulation work.

The input and output parameters were taken as 
explained in the following paragraph.

The objective of the study was to estimate the 
impact of dry and wet hydrologic conditions on 
the Panchet reservoir. The surplus water of any 
reservoir represents the available water after fulfill-
ing the necessary demands. The amount of water 
also determines the hydrologic stress of a reservoir. 
A high surplus implies that the reservoir is in an 
unstressed condition. The opposite reveals the 
stressfulness of the same. Hence, as the output it 
was taken the amount of water used in domestic, 
industrial, hydropower sectors with reservoir stor-
age, inflow; outflow, and water level were taken 
as the input. Hydrological data set of two years 
was collected from the maintenance authority of 
the reservoir and daily data of all the parameters 
were fed into the neural models.

The time scale is one of the major constraints 
of any estimation problem. In the present study, 
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in the selected time span. The entire data set was 
ranked in an ascending way with respect to the 
magnitude and categorised with the help of the 
rules explained in the next paragraph. Neural 
network is a universal classifier (Hassoun 1995). 
It can estimate clustered dataset with more ef-

the time scale was not ignored but hydrologic 
conditions and reservoir response to such condi-
tions were given more weightage. The response 
of the Panchet reservoir was observed for two 
consecutive years and its response was analysed 
for the hydrologic conditions that were prevalent 

Table 1. Summary table showing optimum artificial neural network (ANN) model’s architecture and ANN internal 
parameters

Network name IBP BBP LM

Network topology

Network type feed-forward fully 
connected network

feed-forward fully 
connected network

feed-forward fully 
connected network

No. of inputs 7 7 7

No. of hidden layers 2 1 1

Hidden units in the 1st hidden layer 1 1 1

Hidden units in the 2nd hidden layer 2 0 0

No. of outputs 1 1 1

Connection weight 10 8 8

All the topology was created using genetic algorithms with following parameters

Population size 40 40 40

No. of generations 60 60 60

Network size penalty 6 5 6

Crossover rate 0.8 0.8 0.8

Mutation rate 0.2 0.2 0.2

Training algorithm and parameters

Training algorithm Incremental back 
propagation

Batch back  
propagation

Levenberg-Mar-
quardt

Training iteration 2 3 2

Stop training conditions

CCR on training subset must be achieved 98 98 98

Maximum allowed number of iterations 100 000 100 000 100 000

Training & testing results

Training stop reason Generalisation loss 
became too high

Generalisation loss 
became too high

Error reduction 
became too low

Average CCR (training) 90.14 79.68 91.55

Average MSE (testing) 93.16 82.91 67.52

Performance validating criteria

CCR 90.97 80.57 87.68

R 0.83 0.89 0.92

SD 1.07 0.81 0.05

IBP – Incremental Back Propagation , BBP – Batch Back Propagation, LM – Levenberg-Marquardt, MSE – mean square 
error, CCR – correct classification rate, R – correlation coefficient, SD – standard deviation.
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Figure 2. Figure showing the reservoir surplus for different hydrologic conditions as found from the historical data 
set

  (A) low inflow in the reservoir	 (B) dry climatic condition

  (C) low storage and high demand	 (D) low demand

  (G) low outflow and moderate demand	 (H) low hydropower and high domestic demand

  (E) very low inflow and outflow	 (F) high domestic demand
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ficiency than any other model. As every neural 
model follows a binary system of encoding, the 
accuracy of the neural model increases if clustered 
dataset is used.

As unstable dataset is defined such dataset which 
separates maximum or minimum from others. 
These datasets help to determine the threshholds 
of the entire data set. To be more precise, each 
peak and each trough borders the stability of the 
data set. And if the categorisation of the data set 
is done with respect to the stability of the param-
eters, the output is said to be a more accurate 
representation of the problem (Parasuraman 
& Elshorbagy 2007).

The rules by which the dataset was classified 
are given next:

(1) If the rank of the data is below 5, then the 
data is clustered into group P (peak).

(2) If the rank of the data is below 15 but greater 
than 5, then the data is clustered into group MP 
(mid-peak).

(3) If the rank of the data is below 250 but greater 
than 15, then the data is clustered into group LP 
(low-peak).

Table 2. Table showing the values represented in Figure 2

Value in  
the curve Category/Parameter

X axis Parameter
1 reservoir level (input)
2 reservoir inflow (input)
3 reservoir outflow (input)
4 reservoir storage (input)
5 water used for hydropower( input)
6 water used for industrial sector (input)
7 water used for domestic sector (input)
8 reservoir surplus (output)
Y axis category
3 P
2 MP
1 LP
–1 LT
–2 MT
–3 T

P – peak, MP – mid-peak; LP – low-peak; LT – low trough; 
MT – mid-trough; T - trough

Table 3. Table showing reservoir surplus under dry and wet hydrologic adversaries

Condition Reservoir 
level

Reservoir 
inflow

Reservoir 
outflow

Reservoir 
storage

Water used for 
hydropower

Water used  
for industrial

Water used 
for domestic

Reservoir 
surplus

Dry

MP T T P T T T MT
T T T MP T T T MT
T T T T T T T MT
T T T T T P T MT

MT T T T T MP MT MT
MT T T T T MP P MT
MT T T T P P P T

Wet

P P T T T P P MT
P P T T T T T T
P P T P T T T MT
P P P P T T T MT
P P P MP T P T MT
P P P MP T P P MT

MP MP MP MP P T P T
MP MP MP MP P P P T
T T T T P P P T
P P P T P P P T
P P P T T P P MT
P P P P T P P MT
P P P P P P P T

P – peak, MP – mid-peak; LP – low-peak; LT – low trough; MT – mid-trough; T - trough
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(4) If the rank of the data is below 500 but greater 
than 250, then the data is clustered into group LT 
(low trough).

(5) If the rank of the data is below 550 but greater 
than 500, then the data is clustered into group 
MT (mid-trough).

(6) If the rank of the data is greater than 550 then 
the data is clustered into group T (trough).

The minimum and maximum ranks were 1 and 
731, respectively; as total 730 data were applied 
to the neural models to train the same. 

68.18% of the clustered data set was used for 
training and 15.91% each of the same dataset were 
used for cross validation and testing purposes. 
Table 1 shows the MSE and absolute error after 
training and testing datasets. The model architec-
ture and connection weight are also shown.

The network topology was selected the genetic 
algorithm and IBP, BP, and LM were used as the 
training algorithms to find the optimum result. 
The average CCR after training with LM algorithm 
was found to be 91.55% which is by 114.89% and 
100.63% greater than BP and IBP networks, respec-
tively. The average CCR after testing for LM was 
67.52, i.e. 0.81 and 0.72 times the CCR achieved 
with IBP and BP, respectively.

The predicted results from LM achieved a CCR 
of 87.68% which was 1.08 times and 0.96 times 
the CCR found from BP and IBP networks. The 
CCR of IBP was greater than that of LM but IBP 
was found to be 110.84% less associated than LM 
which had 92% positive association with the target 
data series. LM had 5% deviation whereas IBP and 
BP had 107% and 81% deviation, respectively. The 
connection weight of LM was also 0.8 times smaller 
than that of IBP. According to the performance 
validation criteria and connection weight of the 
networks, LM was selected as the best model out 
of the three even if the CCR of IBP was greater 
than that of LM. As the connection weight is di-
rectly related to the amount of data required for 
training that network, the requirement of heavier 
data is not conducive for the simulation.

The selected model was applied to estimate the 
surplus water of a reservoir with respect to dry and 
wet hydrologic adversaries. Figure 2 (a–h) depicts 
the surplus of the reservoir due to the reservoir 
inflow and outflow, water use, and reservoir level 
in dry and wet climatic conditions as found from 
the historical dataset. X axis denotes the input and 
output whereas Y axis depicts the grouped data set. 
The table represents the input and output values.

The hydrologic adversaries were created by 
changing the input category. The adversaries were 
divided into two groups. The first group repre-
sents the stresses in a dry hydrologic conditions 
and next group represents the stresses that comes 
with wet hydrologic conditions. Incase of both of 
the adversaries the reservoir surplus becomes very 
low or low. That concludes that the reservoir will 
be in a huge negative stress in the case of various 
hydrologic adversaries (Table 3). This was eminent 
in the result given in the last row of the table where 
all the inputs were grouped into the maximum 
but still the surplus shows a low value. The ob-
servations of the results also conclude that there 
is some specific impact of water use on surplus 
which is natural. This help to verify the practicality 
of the model. Even when the reservoir inflow and 
outflow were high and the demands were low, the 
surplus still falls into the lowest group. Thus from 
the results it could be clearly concluded that the 
reservoir would be in stress for both dry and wet 
hydrologic adversaries.

Conclusion

The present study tried to modulate the distri-
bution of the surplus water in the case of various 
dry and wet hydrologic adversaries to identify 
whether or not the impact of the adversaries could 
be mitigated by the present reservoir network. 
In this regard, two years of daily discharge data 
of one of the reservoir in the DVC system was 
randomly selected, ranked ascendingly based on 
their magnitude, and grouped into six categories. 
Three neural models were built. One was selected 
with respect to the better performance validating 
criteria. The behaviour of the inputs in the case 
of hydrologic adversaries were then configured 
and applied to the selected model. The output 
would give the magnitude of surplus in the case 
of these pre-configured hydrologic adversaries. 
According to the results, the reservoir would be 
in high stress when such hydrologic adversar-
ies should happen in reality. The present study 
has shown an approach to predicting reservoir 
response to hydrologic stress on a single reser-
voir. The same study can be applied on multi-
reservoir basins which can show the integrated 
response of the total basin. Neural models are 
data dependant. Hence, it is important to apply an 
appropriate amount of data to train the model, so 
that the desired types of patterns can be learned. 
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The present study can be improved if separated 
models are developed for separate seasons. The 
same can be done for different types of storms 
observed in the basin. 
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