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Abstract: The water regime variability in most catchments is frequently influenced not only by the changes of

the vegetation cover in the annual cycle but also by its development in the time span of decades. That means
that the resulting evapotranspiration depends not only on the actual climatic situation but also on the soil
moisture. The simulations of the rainfall-runoff process have been used with the intention to follow the possible
role of the developing land cover. The differences between the observed and simulated flows in relatively long

periods can be considered as an appropriate tool for the assessment of the water regime changes, in which the

evapotranspiration demand variability is a significant phenomenon.
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The water regime fluctuations and/or tenden-
cies are induced by natural, i.e. mostly climatic
oscillations, or by antropogenic activities. Cli-
matic conditions influence the development of the
vegetation cover in the annual cycle, but they also
create conditions for its evolution on a scale of
years. This could be also the cause of the complex
variations and/or tendencies in the evapotranspi-
ration demands and, consequently, of additional
changes of the water regime. The significance of
the evapotranspiration demands variability could
be supported by some facts concerning the vari-
ability of solar radiation, which is in the connection
with the sun spots (BEER 2005). The oscillations
in the precipitations and runoffs of the Czech
Labe (Elbe) River basin seem to remind of such a
variability (BUCHTELE et al. 2008). The flood flow
regime in south-western Germany which has been
analysed by CAspPARY (2000) illustrates another
natural change with a long term tendency.

However, the natural and stationary conditions
in the basins are frequently considered as valid
even in such situations when in the past some ar-
tificial changes in the water regime occurred. For
example, a large system of fishponds has existed
for more than four centuries and affects seriously
the discharge values of the Luznice River, which
is the sub-basin of the Czech part of the Labe
River basin (Figure 1). It has been estimated that
during the flood in August 2002, the stored water
volume in fish ponds was W = 110—140 mil m3,
and the retention of the largest pond Rozmberk
with W = 70 mil m® was comparable with that
in the Orlik Reservoir at the Vltava River, i.e.
W = 104 mil m?, this being significant for the
protection of Prague.

Even in the recent periods, with relatively short
time series and rather small basins (catchments),
the situation mentioned, namely the development
of evapotranspiration, creates sometimes problems
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Figure 1. Surface runoff during the extraordinary flood on the Vltava River above the Orlik Reservoir in August 2002

for areliable identification of the model parameters
of the rainfall-runoff processes. Nevertheless, the
rainfall-runoff models can be used as valuable
tools also for ascertaining the assumed or appear-
ing natural changes. The goal of the experiments
concerning the simulations for several basins has
been to gain the notion of the plausibility of his-
torical observations, i.e. in the span of several
decades.

Data and tools

The differences between the observed and simu-
lated flows can be appropriate tools, which eventu-
ally help to re-determine the period for the proper
calibration, i.e. the interval with prevailing natural
and stationary conditions. In many cases the re-
calibration can be useful. The data from several

catchments used in this presentation show that
also several accidental phenomena could play a
role, sometimes significant, in this context.

The models SAC-SMA (BURNASH 1995) and
BROOK (FEDERER 1995) have been calibrated for
the simulation of the rainfall-runoff processes at
the experimental catchments presented in Table 1.
Moreover, these models have been used for the
Husinec Reservoir basin, which is situated near to
the Liz catchment, and for two other catchments
in the vicinity, which are mostly forested.

The information on the extent and production
of the vegetation cover or its yields is desirable
in the simulations of many basins. Agricultural
production, i.e. the yields of grain, was considered
as an effective phenomenon for the water balance
years ago (KELLER 1970). The role of extensive
deforestation in some sub-basins of the Labe River

Table 1. List of catchments and the SAC-SMA model simulation accuracy characteristics

Time Altitude H
Catchment period Are;l (ma.s.l) Runoff  Precipitation R Abso. dif.
(years) (km?) H. H_ (l/s) (mm/year) (/o)

Liz Sumava Mts 30 0.989 828 1024 8.50 840 0.8192 18.1
Lysina Slavkovsky les 18 0.273 829 949 2.10 896 0.8354 21.9
Pluhiiv Bor Slavkovsky les 15 0.216 690 804 0.52 864 0.8153 27.1
Cervik Beskydy Mts 50 1.850 640 960 37.90 1125 0.7452 24.8
Mala Raztoka Beskydy Mts 53 2.080 602 1084 60.00 1243 0.8549 24.0
Husinec Sumava Mts 30 202 540 1300 420.00 860 0.8203 22.6
Lenora Sumava Mts 38 176 761 1360 556.00 1028 0.7408 23.5
Modrava Sumava Mts 38 90 973 1370  1158.00 1330 0.7631 24.2
R — coefficient of correlation between Q , and Q ; Abs. dif. — absolute standard error
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Figure 2. Variability of forest cover and grain production (in metric cents) in the Czech Republic (Anonymous 1998)
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Figure 3. Long term variability of forest resources and causes of forest damage in the Czech Republic (Anonymous 1998)
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Figure 4. Forest damage in two neighbouring large catchments of the small Liz catchment — evaluated from satellite

images (1 — other areas; 2 — healthy forests; 3
damaged forests; 6 — very heavily damaged forests)

has been an actual problem and an effort exists
to simulate the runoff under these conditions
(BUCHTELE et al. 2008). Figure 2 and Figure 3
illustrate the situation with the vegetation cover
for the whole country during a long period of the
20" century. The forest damage in the Liz catch-
ment and in other close catchments is presented
in Figures 4 and 11.

— slighty damaged forests; 4 — medium-damaged forests; 5 — heavily

RESULTS OF SIMULATION

Table 1 contains the main characteristics of
the modelling simulation accuracy for the whole
period of observation with the implementation of
the model SAC-SMA.

Possible tendencies in the evapotranspiration
demands have been partly mentioned in the intro-

Liz Husinec 1%
0, 0,
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Figure 5. Parts of evapotranspiration demand: transpiration (TRAN), interception (IRVP, ISVP), and evaporation

(SNVP, SLVP) as the outputs of BROOK model
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Figure 6. The obtained differences dQ = Q_, . — Q. and sum 4Q were used for calibration of the SAC-SMA model at

the Liz catchment

duction and the proportions of the evapotranspira-
tion demand components as the simulation output
are compared for several catchments in Figure 5.
Three close and relatively large mostly forested
hilly catchments are included there, in which a
sudden forest decline, caused by bark beetle out-
break, has led to a decreased transpiration mainly
in the Modrava catchment. The values represent
the outputs of simulation using BROOK model.
Moreover, another results of this modelling are the
examples of the annual course of the evaporation
demands presented in Figure 10, which shows the
variability of evapotranspiration for the assumed
stable vegetation cover.

Hydrology of a Small Basin, Prague, 2008

The prevalence of transpiration in a majority
of catchments is visible in comparison with other
components of the evapotranspiration process.
In the Lenora basin with substantial agricultural
areas, the rain interception is significant while
in the mostly forested hilly Modrava the snow
interception creates an important component
of total evapotranspiration in this forested hilly
basin. Figures 5 and 10 seem to indicate that the
evaporation from the soil could be significant even
in the basins with coniferous forests.

The differences between the observed and simu-
lated discharges dQ = Q_,. — Q,, are presented
in three figures for several catchments, where
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Figure 7. Differences dQ = Q .
the accumulated differences (sum dQ) are mostly
displayed, which can provide another view on the
possible tendency. As examples of the problems
encountered, the following specific changes in the
evaluated basins can be mentioned:

— Figure 6 (Liz catchment) shows fluctuations in
dQ differences and namely in the sum dQ, which
occurred probably due to the instability of the
stream channel after the extraordinarily large
flood in the year 2002, due to the changes in water
level monitoring in the year 1993. It could be due
partly also to the differences in the forest cover
damage indicated in Figure 11.
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Figure 8. Volumes of wood cutting and differences of discharge dQ = Q

Cervik and Mal4 Réaztoka catchments (Beskydy Mts)
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- Q,, and sum dQ of the Lysina a Pluhiiv Bor catchment

— Figure 7 represents the results for Pluhav
Bor and Lysina catchments (HRUSKA & KRAM
2003). This figure indicates, by the accumulated
differences (sum dQ), that diverse forest damage
caused by acid atmospheric deposition occurred
in these geochemically contrasting but otherwise
paired catchments, situated near the heavily
damaged forests of the Kru$né hory Mts.

— Figure 8 (the Beskydy Mts catchments)
presents the effects of scheduled deforestation,
i.e. a greater discharge, but in the recent period is
it possible to notice again a decrease of discharge,
after interrupting the deforestation.
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Figure 9. Groundwater storage variability in the Liz catchment simulated by the SAC-SMA model

The outputs for the Husinec Reservoir basin,
where the comparisons of SAC-SMA model and
BROOK model were prepared, have shown a
similar tendency which indicates that the runoff
has increased only temporarily after a station-
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ary period. It is probably due to the transient
extended arable areas and partly due to the forest
damage caused by the insect outbreaks, similarly
as it has occurred in the near Liz and Lenora
catchments.
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Figure 10. Comparison of evapotranspirations from rainfall-runoff simulation with the BROOK model in the Liz
(upper part) and Husinec (central part) catchments and long term variability in the Lysina catchment (bottom part)
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Figure 11. Forest damage in the Liz basin evaluated using satellite images

The long term variability in the slow groundwater
storage is illustrated in the upper part of Figure 9
showing the output of SAC-SMA model for the Liz
catchment in the period of 1984-2007 with three
components of the sub-surface water (LZTWC
— Lower Zone Tension Water Content; LZFPC —
Lower Zone Free Primary Content; LZFSC — Lower
Zone Free Supplementary Content).

It may be noticed that the periods of the great-
est deficits in the Tension Zone and in the Free
Primary Zone may be very remote, i.e. hydrological
and agricultural drought periods could be asyn-
chronous. This is a meaningful phenomenon for
the evapotranspiration evolution. The lower part
of Figure 9 shows the seasonal characters of the
water content in the Tension Zone and in the Sup-
plemental Free Zone, which might be significant
also for evaporation.

The comparison of some time intervals in Fig-
ures 9 and 10 permits to infer that the oscillation
in the soil moisture affects the variability of eva-
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potranspiration or that mutuality exists between
these phenomena.

Figure 12 illustrates the diverse values of eva-
potranspiration demand as identified in the im-
plementation of the SAC -SM A model for separate
time intervals of observation in the Liz catchment,
which likely indicates the role of the forest cover
change.

CONCLUSIONS

The intention should be to decrease the un-
certainties due to the annual cycle of climatic
conditions in the evaluation of appearing natural
and/or artificial changes of the runoff. The re-
sults suggest that an improvement of the runoff
simulation could be reached by a more precise
evaluation of the evapotranspiration demands as
the variability of the water regime in the catch-
ments studied is influenced by the changes of
the vegetation cover in the annual cycle, but also

1996-07

Figure 12. Mean monthly evapotranspiration demands in the Liz catchment in different periods
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by its development in the span of decades. The
simulations of the rainfall-runoff process are
useful for pursuing the possible role of this land
use. The differences between the observed and
simulated flows in the available period can be
considered as a proper tool for the assessment
of changes.
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