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Czech Hydrometeorological Institute (CHMI) 
– the national hydrological service – issues daily 
deterministic hydrological forecasts with lead time 
of 48 h for more than one hundred watergauge sta-
tions. The discharge forecasts for the basins of size 
several hundreds to thousands square kilometers 
are calculated by rainfall-runoff models. The basic 
input for hydrological model is a rainfall and tem-
perature prediction, which is issued according to 
the synoptic situation by meteorologists. Often the 
output of the numerical weather prediction model 
ALADIN (NWP ALADIN, ALADIN International 
Team 1997), operated by CHMI, is a decisive in-
formation. The error of the precipitation forecast 
is usually the main factor that influences the ac-
curacy of the final flow forecast – at least when 

we speak about the forecasting of summer floods 
caused by heavy precipitation. The importance of 
accurate precipitation forecast is described for 
example in (Rabuffetti et al. 2008).

The deterministic discharge forecast based on 
one rainfall scenario is a great simplification of 
the real situation – the indeterminations, which 
influence the whole calculation process, are not 
expressed in the final discharge forecast. When 
significant decisions are to be made according 
to an actual discharge forecast (e.g. evacuation 
of inhabitants in the flood-threatened area), it is 
necessary to estimate the hazard factor.

The stochastic discharge forecast is nowadays 
a very actual topic. The transformation of mete-
orological uncertainties to the hydrological uncer-
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tainty is solved by many (local and international) 
projects (e.g. COST 731 – Concerted Research 
Action 731 – Propagation of uncertainty in ad-
vanced meteo-hydrological forecast systems). The 
EFAS (European Flood Alert System, see Ramos 
et al. 2007), which issues discharge forecasts for 
main European rivers, uses 50 meteorological 
scenarios of the global NWP (numerical weather 
prediction) model ECMWF for calculation of 
the stochastic discharge forecast. The set of sce-
narios such that each of them is calculated with 
a little bit different initial conditions is called an 
ensemble. The problem is that the space grid of 
the ECMWF model is about 80 km at mid lati-
tudes, which is too coarse for the conditions of 
the Czech Republic; hence, ECMWF is capable 
of predicting only “large-scale” events. On the 
other hand, the meteorological ensemble (a set 
of several model runs which are calculated with 
a little bit different initial conditions) from local 
NWP models caanot be calculated operationally 
due to the long calculation time (one run of the 
ALADIN model takes about 4–5 h). It is also 
possible to estimate the precipitation forecast 
uncertainty by an analogy method (where the 
set of meteorological forecasts is derived from 
similar synoptic situations in the past), although 
the actual NWP models usually give better results 
(Diomede et al. 2006).

The statistical postprocessing of the predicted 
rainfall represents another option. The testing of 
a stochastic precipitation nowcast scheme (based 
on the “downscaling” of the precipitation forecast 
in such a way that it is statistically consistent with 
the recent radar-inferred precipitation fields) 
used for hydrological modelling is described in 
(Pierce et al. 2005) and shows that the statistical 
postprocessing of the NWP precipitation forecast 
is a way how to express the uncertainty of the flow 
prediction. The uncertainty of meteorological 
inputs can be expressed by repeated generation 
of meteorological scenarios with certain statisti-
cal properties (the Monte Carlo method). The 
set of corresponding river discharges obtained 
by repeated simulations (using a hydrological 
model) is then evaluated statistically. The peak 
discharge exceeding curve or the range of peak 
discharges are examples of the resulting stochastic 
discharge forecast. This method can be used for 
all meteorological quantities used as inputs of a 
hydrological model – rainfall, temperature and 
snow cover. 

In this paper, a stochastic generator which pro-
duces the variants of input data scenarios based 
on several statistical parameters is described. 
The problem is solved from the point of view 
of a hydrological forecasting service. The atten-
tion is paid to the uncertainties of meteorologi-
cal input data, because the routine experience 
confirms that these uncertainties usually cre-
ate the main portion of the whole uncertainty 
of the rainfall-runoff simulation. The effect of 
the generator is tested in the conditions of the 
Dyje catchment. For hydrological simulation the 
HYDROG model (Starý & Tureček 2000) was 
used. This semi-distributed rainfall-runoff model 
is a software for simulation, operative prediction 
and operative control of water runoff from the 
catchment with reservoirs. It is routinely used 
by the regional offices Brno and Ostrava of the 
Czech Hydrometeorological Institute (Šálek et 
al. 2006) and by the Odra, Labe and Ohře Water 
Authorities.

METHOD

The uncertainties of discharge forecasts 
calculated by hydrological models

The process of creation of a discharge forecast 
proceeds under the conditions of uncertainty 
composed of:
– 	The choice of a hydrological model – e.g. the 

use of hydrological and hydraulic equations, 
parameterisations and concepts, which always 
simplify the reality. These simplifications ex-
press our ignorance of detailed natural con- 
ditions (e.g. soil properties). On the other side, 
these simplifications are necessary for the pos-
sibility of using a certain hydrological model  
in real time, when the quickness of the calcu-
lation process is one of the most important 
factors.

– 	Uncertainty of measured and predicted input 
data – e.g. the inaccuracy of measured and 
predicted meteorological data and also the 
simplification of the distributions of input 
quantities in space and time for the needs of a 
hydrological model (for example the prediction 
of the average rainfall sum for a certain part of 
the catchment). These types of uncertainties 
can be simulated by the proposed stochastic 
generator.
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The uncertainty of the measured input data

The measured quantity can be considered as a 
random quantity with normal distribution. The 
meteorological quantities are usually not provided 
with an estimation of uncertainty. Their distribu-
tion is usually unknown (only one realization of 
the random quantity is available, the measurement 
is available in several points only, we do not know 
the spatial validity of the measured values etc.). 
In such a case usually the normal distribution is 
used. Since we usually have an insufficient set of 
measured data, its uncertainty can be expressed 
as the expanded standard uncertainty (± 3σ), esti-
mated from the range of the data set. Sometimes 
the evaluation of historical data can help in es-
timating σ.

The uncertainty of the predicted input data

The predicted quantity can be obtained from 
various outputs of NWP models. The number of 
these outputs accessible to the operational hy-
drological service is very small and the accuracy 
of each NWP model is different (this is caused 
by different simplifications used in the models). 
Moreover, the forecast can be adjusted based on 
the experience of the meteorologist. Under these 
ambiguous conditions with a lot of independent 
effects influencing the resulting forecast, it is 
possible to assume the predicted quantity as a 
normally distributed one. Again, the uncertainty 
of the forecast can be expressed as the expanded 
standard uncertainty (± 3σ), estimated from the 
range of the set of forecasts or by the meteorolo-
gist. 

Remark: The normal distribution can be re-
placed by another one, when such information 
is routinely available to the hydrological service. 
Then the proposed generator can be adapted to 
another kind of distribution – e.g. the skewed 
lognormal distribution. 

The generator of a random vector

Let us assume the rainfall over the catchment 
measured by several raingauges. It is possible to 
consider the rainfall intensity as a random quan-
tity with a normal distribution. Since the rainfall 
intensity varies in time, it is possible to speak 

about a random process. At every time step the 
measured values of the precipitation intensity 
create a random vector, the members are which 
correlated to each other. The uncertainty of rainfall 
can be mimicked by repeatedly generating this 
random vector. 

Based on the assumptions mentioned above, the 
following properties of the generator are postu-
lated (Starý 1985):
– 	The measured or predicted quantity (represented 

by a generated random vector) follows a normal 
distribution. 

– 	The uncertainty of the generated quantity can be 
estimated as the expanded standard uncertainty 
(± 3σ). 

The mathematical model was inspired by (Smith 
& Freeze 1979). Its modified version was used in 
(Starý 1983, 1985), where it was applied to the 
testing of reliability of silt cores of dams. 

Mathematical description of the generator

Let us assume the plain area Ω divided to trian-
gles with vertices P1, P2, ..., Pn. With the use of the 
autocorrelation theory (Smith & Freeze 1979), 
it is possible to write:

Xn = a1, n × X1 + a2, n × X2 + a3, n × X3 + ... + an – 1, n × 
        × Xn – 1 + ε 	  (1)

where:
Xi	 –	 values of a random variable in the ver-

tices P1 ... Pn
ε	 –	 normally distributed random variable
a1, n – an – 1, n 	 –	 autoregressive parameters expressing 

the degree of dependence of Xn on its 
neighbours X1 to Xn – 1

A typical location of the vertices P1, P2, ..., Pn is 
depicted on Figure 1.

The Eq. (1) can be written for the total of n 
vertices as a set of n linear equations:

X = W × X + ε 	  (2)

where:
X	 – generated vector of random variables
ε	 – normally distributed random vector
W	 – matrix, which defines the autoregression (in this 

case, the linear interdependence) of X in the verti-
ces P1, ..., Pn; the autoregressive parameters ai, j are 
members of the matrix W
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It is possible to transform the Eq. (2) to the fol-
lowing (Starý 1985):

X = μX + W × X + α × ε 	  (3)

where:
μX	 – mean of X
α	 – matrix (derived from the relationship between the 

standard deviation σX and the correlation and cov-
ariance matrices of the vector X) which ensures the 
required value of the mean μX and the standard 
deviation σX of X

Then the Eq. (3) can be solved:
– Firstly, we need to know the matrix W, which can 

be calculated by the procedure described below. 
The other known inputs are σX and μX.

– The random vector ε is generated from the stand-
ard normal distribution N (0, 1) (in our case we 
were using the Delphi generator).

– With the use of Eq. (3) we obtain an autocorrelated 
vector X with the distribution N (μX, σ2

X).
The generator creates the autocorrelated vec-

tor X for each time step. Since the input data for 
a hydrological model are correlated not only in 

space, but also in time, it is proper to correlate 
the following vector X with the previous one. For 
example, it is possible to keep the same normal 
random vector ε for all time steps or to change ε 
in time “slowly” (this must be tested during the 
operation in order to find the most appropiate 
method). The time autocorrelation of the vector 
X is then approximately modelled by the time au-
tocorrelation of the input set of mean values μX.

In the following text, the methodology of cal-
culation of the matrix W is described.

The Eq. (1) can be written for each raingauge 
station i in the form: 

Xi = a1 × X1 + a2 × X2 + a3 × X3 + ... + ak × Xk + εi 	(4)

where:
k	 – number of neighbours surrounding the point i
a1 – ak	– autoregressive parameters, which express the 

dependence of Xi on X1–Xk

If the set of data measured by all raingauges 
is known, the autoregressive parameters a1 to 
ak (members of the matrix W) in Eq. (4) can be 
solved with the use of the Yule-Walker equations 
(Eshel 2009):

Figure 1. Example of a triangular division location of 
division of area Ω and location of vertices P in which the 
values of a random variable X are considered (n = 5)
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where:
r (1)	 – correlation coefficient between the data of the 

station i and those of the surrounding station 1
r (k – 1)	– correlation coefficient between the data of the 

station i and those of the surrounding station 
(k – 1), etc.

In such a way, we obtain ith row of the matrix W. 
If the Eq. (5) is solved for each raingauge station, 
we obtain the whole matrix W. A particular au-
toregressive parameter equals zero in the case 
that there is no correlation among the stations 
involved.

Table 1. The basic characteristics of the Dyje catchment

Catchment area (km2) 1756

Highest elevation (m a.s.l.) Javořice – 836

Lowest elevation (m a.s.l.) Podhradí, water gauge – 349

Average annual outflow (m3/s) 8.5

100 years return time period peak discharge (Q100) (m3/s) 390
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Figure 2. The map of the upper part of the 
Dyje catchment (with the closing profile 
Podhradí). For the purpose of hydrological 
modelling, the catchment is divided into  
20 Thiessen polygons, within which the input 
quantity (precipitation, temperature or snow 
level) is considered as a constant value

Figure 3.  The example of 
generated and measured 48-
hour rainfall sums (mm) in 
the Dyje catchment; the first 
three rows depict the ran-
domly selected generated 
rainfall events derived from 
the predicted precipitation 
on 29th June 2006 06 UTC; the 
last row depicts the measured 
48-hour rainfall sums (from 
left to right 28.–30. 7. 2006, 
26.–28. 6. 2006, 6.–8. 8. 2006, 
29.–1. 7. 2006)10 – 15
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The matrix W is different for different types of 
meteorological events. For example, the stratiform 
precipitation type is characterized by stronger 
correlation relationships then the convective 
one. Based on the historical data, various types 
of matrices W can be calculated. The choice of 
the proper matrix W according to the expected 
precipitation event can be very important in the 
discharge forecast process. Its relevance will be 
one of the subjects of future work in which the 
proposed generator will be tested in operation.

RESULTS AND DISCUSSION

The proposed generator was programmed by 
the authors in Delphi. It was tested for the Dyje 

catchment (Figure 2). The basic parameters of the 
catchment upstream of the Podhradí profile are 
given in Table 1. Deterministic discharge forecasts 
based on the HYDROG model have been issued 
daily for several river profiles since 2003.

A test of the generator was based on the pre-
dicted rainfall event starting from 29. 6. 2009 06 
UTC. The correlation matrix W was derived from 
the historical hourly precipitation sums (2002 to 
2009) higher than 0.5 mm and lower than 5 mm. 
Quantitative precipitation estimates based on the 
combination of radar and raingauge measurement 
were used (Šálek et al. 2004). The examples of 
generated 48-hour precipitation sums patterns 
are depicted on Figure 3. The examples of sev-
eral types of the measured 48-hour precipitation 
sums are also presented on Figure 3. Comparing 

Figure 4. Stochastic discharge forecasts based on 100 generated precipitation scenarios. The expanded standard devia-
tion (3σ) equals 10, 20, 30 and 40% of the mean (deterministic) predicted precipitation, respectively

150

125

100

75

50

25

0

210

180

150

120

90

60

30

0

3σ =10%

0	 1000	 2000	 3000	 4000	 5000	 0	 1000	 2000	 3000	 4000	 5000

	 Time(min)	 Time(min)

0	 1000	 2000	 3000	 4000	 5000	 0	 1000	 2000	 3000	 4000	 5000

	 Time(min)	 Time(min)

3σ =20%

3σ =30% 3σ =40%

D
is

ch
ar

ge
 (m

3 /s
)	

D
is

ch
ar

ge
 (m

3 /s
)

160

140

120

100

80

60

40

20

0

240

200

160

120

80

40

0

D
is

ch
ar

ge
 (m

3 /s
)	

D
is

ch
ar

ge
 (m

3 /s
)



	 55

Soil & Water Res., 5, 2010 (2): 49–57

both types of precipitation patterns, we see that 
generated precipitation sums resemble the real 
ones quite well.

In the next example, the predicted precipitation 
input data (100 scenarios) were generated with the 

expanded standard deviation 3σ considered as 10%, 
20%, 30% and 40% of the mean (μx), e.g. of the de-
terministic precipitation forecast (which was about 
50 mm per 24 h). The resulting stochastic discharge 
forecasts are depicted on Figure 4. Obviously, 

Figure 5. Comparison of the peak dis-
charge exceeding curves derived from 
stochastic discharge forecasts based 
on 100, 200 and 300 generated rain-
fall scenarios. The expanded standard 
deviation (3σ) was equal to 40% of the 
mean (deterministic) predicted pre-
cipitation
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Figure 6. Examples of simulations of the operative stochastic flow forecast (100 runs) in the Podhradí river profile from 
29. 6. 2006 06 UTC (left up, μX = 45 mm, 3σX = 45 mm), 7. 8. 2006 06 UTC (left bottom, μX = 10 mm, 3σX = 7 mm),  
22. 6. 2009 06 UTC (right up, μX = 38 mm, 3σX = 16 mm) and 23. 6. 2009 06 UTC (right bottom, μX = 26 mm,  
3σX =  3 mm); the precipitation inputs were generated with the given expanded standard deviations 3σ estimated by 
meteorologists for the actual synoptic situations; the black line expresses the deterministic discharge forecast, the red 
line means the actual development of the discharge (measurement)
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the range of the predicted peak discharges grows 
together with the increasing expanded standard 
deviation – as it was expected.

The sensitivity of the proposed generator to the 
number of generated scenarios is depicted on Figu-
re 5, where the peak discharge exceeding curves 
derived from 100, 200 and 300 members (discharge 
forecasts based on generated scenarios) are de-
picted. Only the extremes (the highest discharges) 
can be underestimated when the number of the 
rainfall scenarios is small (such as, for example, 
100 generated members).

Figure 6 shows the examples of stochastic dis-
charge forecasts in Podhradí based on real rainfall 
predictions given by meteorologists from CHMI 
(events from 29. 6. 2006 06 UTC, 7. 8. 2006 06 
UTC, 22. 6. 2009 06 UTC and 23. 6. 2009 06 UTC). 
The black line depicts the deterministic discharge 
forecast (which usually comes from the ALADIN 
precipitation forecast, but can be corrected by 
meteorologists), the blue lines mean the discharge 
variants based on the generated rainfall scenarios 
(for which the expanded standard deviation was 
estimated by meteorologists from the synoptic 
situation and the precipitation predictions from 
all available NWP models). The red line expresses 
the actual development of the discharge. It is ob-
vious that the deterministic discharge forecast 
cannot describe the uncertainties of the predicted 
rainfall. 

CONCLUSION

The algorithm for the calculation of a short-time 
operative stochastic discharge forecast by the 
Monte Carlo method with the use of a hydrological 
prediction model was presented. The proposed 
generator of the input data for the hydrologi-
cal model HYDROG was tested with acceptable 
results. The presented work is original and of-
fers new possibilities in the operative discharge 
forecasting. However, this is only a first step. The 
real-time operation will bring new experience and 
also new requirements.

The stochastic discharge forecast gives much 
more credible information about the discharge 
development in the catchment than the determin-
istic one. The probable range of the peak discharge 
values is important information for the crisis man-
agement. The peak discharge exceedance curve 
expresses the hazard associated with the decision 

(e.g. about a particular way of reservoir operation 
based on the selected inflow scenario).

The first results also show that this tool can 
be used in operation. The main advantage is the 
sufficient quickness of the calculation - the re-
sulted forecast must be available in real time (the 
calculation time of 100 simulation runs is several 
minutes). 

The presented generator makes it possible to 
generate not only rainfall scenarios, but also tem-
perature and snow scenarios, which are necessary 
for winter flood forecasting (these results will be 
presented in another paper).

The proposed algorithm will now be tested in 
real time in the Brno regional office of the Czech 
Hydrometeorological Institute. 
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