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Influence of Terrain Attributes and Soil Properties
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Abstract: The study on the relationship between the soil aggregates stability assessed using water stable aggregate

(WSA) index and the selected terrain and soil properties was performed on a morphologically diverse study site in

Chernozem soil region of Southern Moravia. Soil analyses and detailed digital elevation model processing were the

main methods adopted in the study. The soil structure stability is negatively influenced by the soil material removal

from the steep parts of the back-slope and re-deposition of the mineral loess material at the base of the slope. The

highest aggregates stability was identified in the upper flat parts of the study plot, undisturbed by erosion processes,

and at the concave parts of the back-slope with intensive accumulation of organic matter. Statistical analysis showed

a significant dependence of aggregates stability on organic carbon content and plan curvature index.
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Soil aggregate stability represents an important
characteristic of the soil structure, which is closely
connected with the soil water regime, soil erodibility,
and soil nutrient availability. An enhanced aggre-
gate stability decreases the losses of soil, carbon,
nitrogen, and phosphorus (KASPER et al. 2009), and
increases the amount of macro-aggregates and the
total and effective porosity (SHAVER et al. 2007).
The aggregate (structure) stability influences water
flow and contaminants transport in soils KODESOVA
et al. (2009b). The soil aggregation is affected by
different mechanisms in particular soil types. Floc-
culated clay particles or their complexes with hu-
mus (organo-mineral complexes) and soil organic
matter act as the main cementing agents in the soil
aggregates development (Six et al. 2002). The level
of aggregation and stability of aggregates increase
along with the increasing organic matter content,
surface area of clay minerals, and cation exchange
capacity (BRONICK & LAL 2005).

The reciprocal relationship between organic
matter and soil aggregation was shown in numer-
ous studies. Organic carbon acts as an important
binding agent and reversely, the soil aggregation
influences organic matter accumulation by provid-
ing physical protection to soil organic carbon by
its incorporation into aggregates (Wu et al. 1990;
Fox & LE BissoNNAIs 1998; Six et al. 2004). Close
linear relationships between organic carbon content
and water-stable aggregate variables (mean weight
diameter or wet-sieve index) for various soils were
found by ANGERS (1992) and CARTER (1992).

The soil management and human disturbances
also significantly influence the soil structure stabil-
ity. The soil processing at improper soil moisture,
crossing of heavy machinery, irrigation, and use
of fertilisers can lead to soil structure degrada-
tion (PAGLIAI et al. 2004). Non-tillage practices
evidentially improve the soil aggregation, opposite
to the tillage management practices (OLCHIN et
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al. 2008). The soil aggregates stability decreases
in soils under annual crops (ANGERS ef al. 1999),
continuous tillage, and arable crop production
(EYNARD et al. 2006).

The soil aggregate stability may be assessed us-
ing various methods, which reflect also different
aggregate breakdown mechanisms. A comparison
of various methods was presented by ROHOSKOVA
and VALLA (2004) and KopESOVA et al. (2009a).

Topography is the key factor forming the soil cover
in climatically and geologically homogenous areas.
It has a significant influence on a great range of soil
physical and chemical properties (GERRARD 1981).
A loess region with Chernozem as a dominant soil
unit is an example of such an area. Quantitative
topographic data are widely applied in studies on
how topography influences the soil properties. The
slope, curvature, and topographic index (TWTI) are
the most frequent variables (PENNock 2003). The
properties investigated are various: the soil depth
(ODEH et al. 1995; PENiZEK & BORUVKA 2006), par-
ticle size distribution (ODEH et al. 1995; ZADOROVA
et al. 2009), organic carbon content (McCKENZIE &
RYAN 1999), hydromorphic features (MUMMERY et
al. 1999), soil units delineation (ZADOROVA et al.
2008, 2011) or, less frequently, the soil structure
variability (CANTON et al. 2009).

Numerous studies describe the relationships
between the aggregate stability indexes and soil
erosion (LE BISSONNAIS 1996; CANTON et al. 2009).
Aggregate stability is a critical component of soil
erodibility since it controls the soil dispersion and
surface seal development. Aggregate stability and
soil erodibility are inversely related.

The spatial heterogeneity of aggregate stability
is closely related to the terrain attributes (such as
the slope, curvature, aspect) through their impact
on various soil properties (RHOTON & DUIKER
2008). Most of the studies emphasise the relation
between organic carbon, soil erosion, and, the role
of the soil aggregation in organic carbon protection
in depression areas (Six et al. 2004; BERHE et al.
2007; YADAV & MALANSON 2007). Nevertheless,
the studies on the soil aggregate stability spatial
distribution and its relationship with topography
are rather rare and focused more on the assess-
ment of soil aggregate stability in different parts
of the slope system (RHOTON et al. 2006; TANG
et al. 2010) than on their direct relationship with
topographic derivatives (CANTON et al. 2009).

The study presented here was performed to
assess the soil aggregate stability with respect to
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other soil physical and chemical properties and
terrain attributes on a cultivated study site intensely
changed by soil erosion and soil mass redistribu-
tion. The study serves as a preliminary work for
a complex research on the spatial heterogeneity
of soil structure stability and its relationship with
the selected variables.

MATERIAL AND METHODS

Study site

The study was situated in a loess region in
Southern Moravia in the Czech Republic, i.e. in
the Haraska river watershed. The wider area is
underlain by upper Eocene molasse facies and
Oligocene sandstones covered by a Pleistocene
loess layer (CHLUPAC et al. 2002). Haplic Cher-
nozem is the original dominant soil unit in the
wider area. An extremely diversified soil cover
resulted from erosion. A detailed research was
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Figure 1. Study plot with sampling points; gray scale
shades indicate different colour (caused mostly by or-
ganic matter content) within the area
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carried out on one study plot (strip part of an
agricultural parcel, area of 6 ha) in Brumovice
cadastre (Figure 1). The site is characterised by a
flat upper part (slope 0-0.5°) covered mostly by
Haplic Chernozem. The middle part, formed by a
substantive tributary valley, is steeper (up to 15°)
with eroded phases of Chernozem and Regosol in
the most exposed parts. The base slope and the
tributary valley soil cover is represented mostly
by colluvial Chernozem and Colluvial soil. Mean
slope of the plot is 12.7°. The side valley represents
a major line of concentrated runoff emptying into
a colluvial fan. Winter barley was planted at the
study plot when the soil samples were taken from
the surface horizon in November 2009.

Methods

The samples for analysis were taken from
15 points in the representative terrain and soil
cover positions (Figure 1).

Particle size distribution, organic carbon con-
tent, texture, pHHZO, pHy,, CaCO, content and
particle density were measured using the standard
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laboratory techniques. The particle size distribu-
tion (fractions of clay, silt and sand) was obtained
by the hydrometer method (GEE & ORr 2002). The
total soil carbon content was measured using the
dichromate redox titration method (SKJEMSTAD &
BaLpock 2008). The wet oxidation (K,Cr,O.) was
followed by the potentiometric titration with fer-
rous ammonium sulfate. The soil pH was measured
using a 1:5 (w/v) ratio of soil and water (pH,; ) and
1 M KCI (pHy,) solution (ISO 10390 19943 using
an inoLab Level 1 pH-meter. CaCO, content was
measured using the volumetric calcimeter method
described by LooPPERT and SUAREZ (1996). The
carbonates reacted with HCI (in a sealed system)
to form CO,. The pressure increase was measured,
which is, under the constant temperature, linearly
related to the soil sample carbonate quantity. The
pycnometer method (FLINT & FLINT 2002) was
used to measure the particle density.

The aggregate stability was studied using the
procedure presented by NiMmMo and PERKINS
(2002). Four grams of air-dry soil aggregates of the
size of 2-5 mm were sieved for 3 min in distilled
water (sieve 0.25 mm). The aggregates remaining
on the sieve were next sieved in sodium hexamet-
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Figure 2. Selected terrain attributes (slope — left and plan curvature — right) with the sampling points
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aphoshate until only sand particles remained on
the sieve. The index of water stable aggregates,
WSA (-), was then determined as:

WDS

WSd = ———
WDS + WDW

where:

WDS - weight of aggregates dispersed in the dispersing
solution (M)

WDW — weight of aggregates dispersed in distilled water
(M)

The topographic derivatives were obtained from
the digital elevation model (DEM) derived from
the ground laser scanning procedure (ZADOROVA
et al. 2011). The topographic derivatives were
calculated using integrated algorithms imple-
mented in ILWIS 3.3 (Figure 2) from the DEM:
slope, plan (planC) (Figure 2), profile (profC) and
mean curvature (meanC), topographic wetness
index (TWI), sediment transport index (STI) and
stream power index (SPI).

The multiple linear regressions were used to
evaluate the relationships between the WSA in-
dex and the measured physical and chemical soil
properties and terrain attributes. The simple cor-
relation between the variables was assessed using
Pearson correlation coefficient.

RESULTS AND DISCUSSION

The resulting WSA indexes, the soil properties
measured and terrain attributes in each sample,
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are shown in Table 1. The soil aggregate stability
increased with the increasing WSA index. The
highest WSA was determined in undisturbed Cher-
nozem in the flat upper part of the plot. The base
of the slope covered by Colluvial soil shows a
lower aggregate stability, even though the organic
carbon content is relatively high due to the soil
mass accumulation. The lower WSA index can be
caused by partial accumulation of loess material
in the low-laying parts of the slope and its mixing
with organic matter. Another factor decreasing the
structure stability can be the frequent traversing
of heavy machinery in this part of the study plot.
On the contrary, the concave parts of the back-
slope (the tributary valley) showed a high aggre-
gate stability, given by the accumulation of pure
organic matter. A decrease of aggregates stability
is evident in the exposed parts of the slope, mainly
due to the intensive soil organic carbon removal
and subsoil exposing. TANG et al. (2010) demon-
strated a significant difference of the WSA index
between the shoulder and toe slope positions, the
WSA at the toe slope being significantly higher
than that at the shoulder slope. The result was
explained by the fact that the small-sized water
stable aggregates displaced at the shoulder slope,
transported by surface flow, and redeposited at the
toe slope accelerated the development of WSA at
the toe slope location. PiIERsoN and MULLA (1990)
found the highest aggregate stability and organic
carbon content in the foot-slope and toe-slope
positions, and the lowest one at the summit.
Statistical analysis (Table 2, Figure 3) showed
the dependency of the WSA index on organic
carbon content. This result fully corresponds
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Figure 3. Regression analysis: relationship between WSA index and organic carbon content (left), relationship

between WSA index and plan curvature (right)
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with numerous studies on aggregate stability (e.g.,
ROBERSON et al. 1991; LE BISSONNAIS et al. 2007;
KoDESOVA et al. 2009a). The relationship between
WSA and other analytic properties was proved
only in the case of negative correlation with pH, ...
The increase of pH together with increasing car-
bonates content in the steep parts of the slope
evidence of subsoil loess horizon exposition. A
lower aggregation of the subsoil then leads to a
lower WSA index. The role of the soil reaction in
the soil aggregation was showed by Boix-Fayos et
al. (2001) and BrRoNicK and LAL (2005). The soil
texture did not show any significant relationship
with the soil aggregate stability, although the role
of the clay content in the aggregation was proven
by many authors (e.g. Kay 1998). This fact can be
explained by a relatively low spatial heterogeneity
of the texture given by a high and non-variable
silt content in the whole profile. A similar result
was obtained by CANTON et al. (2009).

The role of the terrain attributes concerning
WSA index was apparent in the case of curvature.
Correlation analysis showed a significant rela-
tionship between the mean and plan curvature
and WSA index. Regression analysis proved a
strong dependency of the aggregate stability on the
plan curvature (Figure 3) meaning that decreas-
ing (concave) plan curvature implies the increase
of aggregates stability. The relationship does not
consist in the organic carbon content distribution,
when no correlation between organic matter and
curvature was determined (Table 2). ZADOROVA
et al. (2011) identified the plan curvature as the
main variable influencing the general soil mass
redistribution in the study plot where it showed
a significant relationship between the soil unit
distribution and soil depth. Correlation with the
slope is very low. This fact corresponds with the
low control of slope in general soil-mass redistribu-
tion at the plot (ZADOROVA et al. 2011). CANTON
et al. (2009) did not find any correlation between
the terrain attributes and aggregates stability.

Multiple linear regression showed again that the
WSA index was affected mainly by the organic
carbon content and plan curvature:

WSA = 0.3498 + 0.0967 x C__ (%) — 0.00722 x
planC (2)

Equation explained 85.5% of the variability in
the WSA index. The standard deviation of the
residuals was 0.046.

CONCLUSIONS

Soil degradation by erosion and deposition is
a significant factor changing the soil cover of
the studied area. The study site showed a high
variability of the soil units due to an accelerated
soil erosion. Heterogeneity of the soil aggregate
stability can be related to the strong material re-
distribution on the slope influencing particularly
organic carbon content in the plough layer. The
soil structure is negatively influenced by a massive
soil material removal from the steep parts of the
back-slope and, at the same time, by the deposi-
tion of the mineral loess material at the base of
the slope. Terrain attributes, as one of the main
factors actuating the surface runoff, showed a
strong relationship with the structure stability
through plan curvature index. The slope, on the
contrary, has a very low influence on the spatial
distribution of the soil aggregates stability.
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