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Abstract: Soil depth is an important parameter for models of surface runoff. Commonly used models require not only 
accurate estimates of the parameter but also its realistic spatial distribution. The objective of this study was to use 
terrain and environmental variables to map soil depth, comparing different spatial prediction methods by their effect 
on simulated runoff hydrographs. The study area is called Faucon, and it is located in the southeast of the French 
Alps. An additive linear model of “land cover class” and “overland flow distance to channel network” predicted the soil 
depth in the best way. Regression kriging (RK) used in this model gave better accuracy than ordinary kriging (OK). 
The soil depth maps, including conditional simulations, were exported to the hydrologic model of LISEM, where three 
synthetic rainfall scenarios were used. The hydrographs produced by RK and OK were significantly different only at 
rainfalls of low intensity or short duration. 

Keywords: conditional simulation; Faucon; hydrograph; kriging; LISEM; soil depth

The surface runoff is a source of erosion, gullies 
and flash floods in mountainous areas (De Roo 
1996a). All measures to reduce these hazards require 
accurate runoff simulation. Important factors to 
be taken into consideration for runoff modelling 
are: (1) environmental parameters, including land 
cover/land use, topography and geology (Grayson 
& Bloschl 2001; Herbst & Diekkrüger 2006b; 
Shafique et al. 2011); (2) rainfall spatial variability 
(Singh 1997; Goovaerts 2000); (3) infiltration 
capacity of soil. The latter mostly depends on stor-
age capacity of soil which is the effect of soil depth, 
porosity and initial soil moisture (Kutilek et al. 
1994). If the soil does not have a sufficient storage 
capacity because of being shallow and/or having the 
high initial moisture, most of the rain will contribute 
to runoff generation. In other words, as explained 
by Green-Ampt model (Green & Ampt 1911; Nei-
tsch et al. 2002), the surface water infiltration rate 
is inversely proportional to cumulative infiltration, 

i.e. storage capacity ( Jetten 2002). Therefore, 
the soil depth strongly affects water infiltration 
and accordingly runoff generation (Neitsch et 
al. 2002; Herbst & Diekkrüger 2006a). Since 
in mountainous areas there are a wide variety of 
soils with different depths, the runoff generation 
amount differs spatially. The knowledge of more 
realistic spatial variations of this soil property would 
result in better hydrologic simulations. This will 
require an intensive soil survey which is difficult 
and expensive. Hence, knowing how far general 
or very detailed spatial variations of soil depth 
may influence the hydrologic modelling will guide 
researchers to plan optimally for future studies on 
runoff and flash flood modelling. 

The soil depth covaries spatially with soil type and 
environmental variables (Dietrich et al. 1995; Mi-
nasny & McBratney 1999; Kuriakose et al. 2009). 
In a conventional soil survey, inaccessible parts of a 
catchment would be mapped by environmental and 
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terrain parameters as predictors (McKenzie & Ryan 
1999; McBratney & Mendonça Santos 2003; 
Penížek & Borůvka 2006). Some studies stated that 
using environmental factors such as slope, land use 
and land cover as the predictors of soil hydrologic 
properties will result in accurate outputs (Odeh et 
al. 1995; Merz & Bárdossy 1998; Kuriakose et al. 
2009). Florinsky & Eilers (2002) reported that the 
spatial distribution of topsoil moisture content has a 
significant relationship with the topographic indices 
including slope gradient, aspect, plan curvature, 
specific catchment area and stream power index. 
Kalivas et al. (2002) observed that the morpho-
metric parameter of distance to river could accept-
ably predict the sand and clay content of soil. Other 
researches have demonstrated that morphometric 
variables such as elevation and distance to stream 
are very much promising to be used as the predictors 
for soil depth (Herbst et al. 2006a, b; Ziadat 2010; 
Shafique et al. 2011). Best-predictor maps of soil 
depth give the best prediction at each location, but as 
a whole they do not realistically represent the spatial 
variation. For this, kriging and conditional simulation 
of soil depth will result in better representation of 
spatial variations (Webster & Oliver 2007). Odeh 
et al. (1995) and Herbst et al. (2006a, b) concluded 
that regression kriging using the slope attributes as 
co-variables is the most appropriate method with 
the least prediction errors for the soil depth map-
ping. Penížek and Borůvka (2006) also reported a 
similar result with the difference that the slope acted 
better when used in Co-Kriging. Kuriakose et al. 
(2009) obtained the most accurate maps of the soil 

depth when they applied regression kriging and land 
cover/land use as predictors. They also reported that 
conditional simulation would give better realization 
of soil depth.

The objectives of this study were: (1) to assess 
the ability of environmental and morphometric 
variables to map soil depth; (2) to examine the 
effect of different soil depth spatial variations on 
runoff simulation using the hydrologic model of 
LISEM (Jetten 2002).

MATERIAL AND METHODS

Study area

The study area called Faucon (Figure 1), centred 
at 44°25'N and 6°40'E (Hosein 2010), has a stream 
which is a tributary of the Ubaye River. The area’s land 
use/land cover mainly consists of farms, prairies and 
forests of broadleaved and coniferous trees (Hosein 
2010). The catchment has experienced 14 flash floods 
in the last century (OMIV-EOST 2010). 

Data acquisition

Most of the basic data required for runoff simula-
tion in the LISEM model (Jetten 2002), had been 
acquired by the Mountain Risks project (Mountain 
Risks 2010). Other data including soil properties 
and some site descriptions were obtained during 
field observations and laboratory work (Table 1). 

Figure 1. The Faucon hydrological sub-basin
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Sample locations were determined by the strati-
fied purposive sampling strategy for which the 
geomorphic and land cover maps were overlaid and 
on each resultant unit, at least one sampling point 
was selected, considering accessibility of the points 
(Figure 2). There were some available data on soil 
(Hosein 2010) sampled from the middle of the 
catchment which were also taken into considera-
tion. In total, 64 sampling points were determined. 

The soil depth was measured with an auger. Note 
that the soil depth was considered from the soil sur-
face down to the bedrock, which includes all the soil 
horizons. The saturated hydraulic conductivity (Ks) 
was determined using the single-ring infiltrometer 
method (Bagarello & Sferlazza 2009; Farrel 
2010). The surface stoniness and soil texture were 
determined using FAO and feel methods, respectively 
(FAO 2006; USDA 2010). Some other site observa-
tions, namely plant height and canopy cover at each 
land cover unit were recorded. The leaf area index 
(LAI) was then calculated by the WOFOST-Diepen 
equation (Jetten et al. 2010). Other soil parameters 
(Table 1) were measured in laboratory. The random 
roughness and Manning’s coefficient parameters were 
also measured for each land cover unit, using the 
Manning and Random Roughness tables available 
in literature (Mwendera & Feyen 1992; Renard 
et al. 2000; Prachansri 2007). The measured pa-
rameters were then assigned to their corresponding 

units on the map shown in Figure 2. All the resulting 
maps were re-sampled to 15 m resolution by the 
nearest neighbour method. Since the LISEM as-
sumes that the stream width is smaller than the cell 
size (Hessel 2005) and the maximum width of the 
Faucon stream was 9 meters, the cell size was set at 
15 meters. Also, based on literature (Hessel 2005), 
because Chow’s kinematic wave equation is used in 
the LISEM (Jetten 2002), selecting the grid size 
equal or less than 15 meters causes stability between 
dt (time component) and dx (distance component) of 
the differential kinematic wave equation and results 
in realistic outputs (Hessel 2005).

Hydrologic analysis of the catchment

The runoff ratio of the catchment was calculated 
by the following equation:

 	  (1)

where:
C	 – runoff ratio
Di	 – stream discharge (m3/s) at duration of Ti (min)
n	 – number of the time intervals
Ra	– total amount of rainfall (m)
A	 – area of the catchment to the gauging station which 

was 9 × 106 m2

Table 1. The list of data used for the LISEM model

Data Source
Hydraulic conductivity, Ks (mm/h) field work, some measurements were available 

from previous research (Hosein 2010)
Soil depth (mm) field work
Porosity (%) laboratory measurement
Soil field capacity moisture (in %) as the initial 
soil moisture

laboratory measurement

Soil bulk density (g/cm3 ) laboratory measurement
Soil texture field work
Fraction of soil covered by vegetation (%) field work
Plant height (m) field work
Hourly rainfall data of Faucon available in mountain risks project dataset
Faucon stream temporal discharge (m3/s) available in mountain risks project dataset
InSAR DTM (15 m resolution) available in mountain risks project dataset
Land cover map available in mountain risks project dataset
Roads map available in mountain risks project dataset
Lithologic map available in mountain risks project dataset
Geomorphologic map available in mountain risks project dataset
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The runoff ratio was 1.1, which indicates that the 
stream discharge variations were not caused only by 
the received rainfall. This could be related to errors 
in precipitation measurements and unquantified 
spatial variation in rainfall throughout the water-
shed. In addition, the base flow of the stream comes 
from groundwater (Remaitre & Malet 2005) that 
may originate from other catchments which receive 
different amounts of rainfall. Since there were no 
data available for neighbouring catchments and 
spatial variation in rainfall, model calibration and 
validation was not possible. 

Preparation of morphometric parameters 
and other environmental maps

The land cover and lithologic maps were available 
as shape files, projected in Lambert zone III. The 
map projection system was transformed to UTM 
(WGS84 zone 32N), re-sampled to a 15 m grid, 
and then the maps were converted to Raster and 
ASCII in ArcGIS. The Raster InSAR DTM with 
15 m resolution was also transformed to UTM 
(WGS84 zone 32N) in ArcGIS, then imported to 
SAGA GIS software (Cimmery 2010). Upon fill-
sink operation by the Planchon/Darboux method, 
the morphometric parameters of LS factor, slope, 
aspect, wetness index, overland flow distance to 
channel network, plan-profile curvature and con-
vergence were derived. 

Statistical modelling approach

A linear regression approach was run in the R soft-
ware (Rossiter 2010) so as to analyse the relation 
between soil depth and the environmental and 
morphometric parameters. Upon finding the best 
explanatory variables for the soil depth, the additive 
and interaction models were investigated using the 
forward stepwise method (Rossiter 2010). 

Kriging of soil depth

The local autocorrelation of soil depth data and 
residuals of the soil depth model (refer to 2.5.) were 
determined by variograms and then the ordinary 
(OK) and regression kriging (RK) was applied. By 
doing the cross-validation of the kriged maps, the 
mean error (ME) and root mean squared error 

(RMSE) were calculated as indices of the prediction 
accuracy. Finally, the created maps were exported 
to PCRaster. The conditional simulation of the 
soil depth was also carried out. The maximum 
number of nearest observations which would be 
used for the simulation (nmax) and the number 
of simulations (nsim) were set at 64 (equal to the 
number of sampling points) and 30, respectively. 
The number of simulations was selected randomly 
so as to have sufficient simulated realizations for 
further analysis.

Preparation of LISEM input maps 
and the run of model

The LISEM is a physically based model which 
can simulate erosion, runoff and sediment trans-
port after each rainfall event ( Jetten 2002). The 
model is raster-based and uses PCRaster as the 
GIS environment (Jetten 2002). Hence, all the 
produced maps were exported to the PCRaster 
where the Local Drain Direction (LDD) and other 
catchment characteristics were derived from the 
DTM (Jetten 2002).

Three rainfall scenarios were designed based 
on past events. According to the available rainfall 
records of 2010, the maximum rainfall intensity of 
12 mm/h was used for 2 durations of 60 min and 

Figure 2. The sampling points; available data locations 
represent the data acquired by a previous study (Ho-
sein 2010)
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4 h. Based on Remaitre & Malet (2005), the 
area has experienced 30 mm/h rainfalls; there-
fore the latter intensity for duration of 60 min 
was also introduced as the third scenario. The 
Green-Ampt and LISEM original interception 
storage equations were selected in the model run 
file. The time step of the simulation was selected 
as 10 s because the cell size of all the maps was 
15 m. According to the Courant condition for ac-
curacy and stability, the time step must be smaller 
than the cell size when using the kinematic wave 
equation (Hessel 2005). 

RESULTS AND DISCUSSION

Statistical analysis on data

According to the statistical analysis of the soil 
depth dataset, the skewness and kurtosis values 
were 0.16 and –0.03, respectively, which indicates 
the lack of normal distribution. The reason could 
be related to a small number of samples and the 
applied sampling method. The soil data are not from 
a random sample but from a purposive one. The 
soil depth coefficient of variation (CV) was 58%, 
which indicates low variability of this parameter. 
In Table 2, the goodness-of-fit of linear models is 
shown by adjusted R2. The linear model validity 
is based on diagnostic plots of the models. Note 
that the R program enters categorical variables, i.e. 
Land cover and Lithology, in the regression analysis 
by the contrasting coding systems (Bruin 2006).

Variables which had a significant relation with 
soil depth did not have any good diagnostic plots 
to show the model validity. Only the land cover 
class was the best explanatory variable for the 
soil depth (adjusted R2 =0.44), and resultant lin-
ear model parameters were very significant. This 
could be relevant to the land cover/land use in-
fluence on soil protection and erosion. Upon the 
stepwise forward modelling, adding the terrain 
parameter of the overland flow distance to chan-
nel network raises the soil depth model fit slightly 
(adjusted R2 = 0.46). This model had the highest 
correlation coefficient. That is, just under half 
of the soil depth variance is explained by land 
cover class and overland flow distance to chan-
nel network. Diagnostic plots of the model were 

Table 2. The validity of soil depth linear models

Variables
Soil depth 

adjusted R2 model validity

Land cover 0.44** valid

Lithology 0.08* invalid

Slope 0.07* invalid

Aspect 0.005 invalid

Profile curvature –0.01 invalid

Plan curvature –0.01 invalid

Convergence –0.01 invalid

Wetness index –0.003 invalid

Overland flow distance 
to channel network

0.05* invalid

Elevation 0.03* invalid

LS –0.01 invalid

*significant at P = 0.05; **significant at P = 0.01

Figure 3. The diagnostic plots of soil depth modelled by land cover and overland flow distance to channel network
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examined (Figure 3) which looked acceptable. The 
land cover effect could be discussed with regard to 
the plant role in soil genesis (Jenny 1941) and soil 
protection (Foth 1984). Also, topography plays 
an important role in soil genesis as well as soil 
erosion and accumulation (Foth 1984; Milevski 
2007), so that thicker soils would be expected at 
lower elevations and on gentler slopes which have 
concave curvature. However, in different studies, 
various terrain parameters have been found as 
the soil depth explanatory variable, for example 
Herbst & Diekkrüger (2006a, b) reported that 
the tertiary morphometric parameter of slope 

elements had the highest correlation with the 
soil depth while Kuriakose et al. (2009) and this 
study found other terrain parameters.

The results of the present study are compatible 
with those of Shafique et al. (2011), where the 
additive model of elevation and distance to stream 
(channel network) was found to best predict the 
soil depth and the physical reason behind it was 
attributed to erosion at stream banks.

Ordinary kriging (OK) 
for soil depth prediction

The empirical variograms of soil depth were plot-
ted in order to understand if there is any spatial 
structure or not (Figure 4). The best model to fit 
was a circular variogram. 

An ordinary kriging prediction was made for the 
soil depth. In Figure 5, the results of OK as well 
as the variance (uncertainty) are shown.

The kriging residuals were obtained by the krig-
ing cross-validation. The residuals were used to 
calculate the mean error (ME) and root mean 
squared error (RMSE), which were –0.67 mm and 
63.7 mm, respectively. The prediction of RMSE 
is lower than the average soil depth. Hence, the 
RMSE was 57% of the average soil depth. 

Regression kriging (RK) 
for soil depth prediction

The autocorrelation of the soil depth model re-
siduals was investigated by a variogram (Figure 6). 

Figure 4. The empirical variogram for soil depth; vario-
gram model = circular, nugget = 2000 mm2, partial sill 
= 2000 mm2, range = 410 m

Figure 5. (a) - the map of soil depth made by the ordinary kriging; (b) - the soil depth ordinary kriging variance mm2
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The circular model was fitted to the variogram. 
Because of the residuals spatial structure existence, 
the next step which was the regression kriging 
was applied (Figure 7). The map made by the RK 
shows more variability than the OK map. The RK 
variance ranges from 0 to 3000 mm2. The range 
of the RK variance is lower than that of the OK.

Upon the automatic cross-validation processed by 
the R, the kriging accuracy was assessed. The ME 
and RMSE were –2 mm and 60 mm, respectively. 
The regression kriging RMSE is 54% of the aver-
age soil depth, which is slightly lower than that of 
ordinary kriging. Therefore, the accuracy of the 

RK is better than that of the OK. A disadvantage 
of the RK is the production of unreal negative 
values (Figure 7) which are the interpolation 
artefacts. Since kriging has a smoothing effect 
which causes the over- and underestimation of 
real values (Yamamoto 2005), the conditional 
simulation can be used to remove the smoothing 
effect (Webster & Oliver 2007). Based on the 
cross-validation of the kriging results and RMSE 
comparisons, the RK produced better results 
than the OK, thus the RK was implemented for 
the conditional simulation. Figure 8 shows two 
realizations of the RK simulation. As Figures 7 
and 8 demonstrate, the simulation results are 
more detailed than the kriged maps.

The LISEM output analysis

Figure 9 shows modelled discharge hydrographs 
produced by applying two soil depth maps and 
different rainfall scenarios. The applied maps 
were named sdok and sdrk which stand for ordi-
nary kriging and regression kriging of soil depth, 
respectively. According to the Figure, at the be-
ginning of rainfall, the sdrk hydrographs have 
higher discharge than the sdok, while at the peak 
the differences are reduced.

The characteristics of produced hydrographs 
(Table 3) show that the discharge peak of sdrk 
is higher than that of sdok at scenario (A) where 
rainfall intensity and duration are the least. As 
the rainfall duration increases at scenario (B), the 
peaks of discharge become equal and at scenario (C) 

Figure 6. The variogram of soil depth model residuals; 
Variogram model = circular, partial sill = 537 mm2, 
nugget = 2394 mm2, range = 647 m

Figure 7. The regression kriging of the soil depth (left) and the kriging variance (right)
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where the rainfall intensity is the highest, the dis-
charge peak of the sdok exceeds that of sdrk. At the 
three rainfall scenarios, the sdrk produced higher 
total discharge than sdok. As rainfall intensity or 
duration increases, the total discharge differences 
decrease. The hydrograph means at each rainfall 
scenario were compared by the Mann Whitney U 
(Wilcox) test (Bhattacharjya 2004). The test 
results revealed that the means of hydrographs, 
generated at scenario (A), were significantly dif-
ferent at a 95% confidence interval while scenario 
(B) and (C) did not cause a significant difference 
in the hydrographs. This could be related to dif-
ferences in total soil volumes. Figure 10 illustrates 
the total soil volume of the two soil depth maps. 
Accordingly, the sdrk has a lower soil volume than 
the sdok. This means that the sdrk has a lower 
infiltration capacity for water which increases the 
saturation overland flow as confirmed by scenario 
(A). At scenarios (B) and (C), both soils of sdrk 
and sdok probably reached almost the saturation 

level at the peak time; hence, the soil depth differ-
ences have no effect on water infiltration and the 
peak discharges are equal or marginally different.

Also, three simulated realizations of the soil 
depth were selected and analysed in LISEM. The 
modelled hydrographs are illustrated in Figure 11. 
The 4th, 10th and 30th realizations of the soil depth 
simulation are shown as sdrk4, sdrk10 and sdrk30, 
respectively. The Wilcox test results indicated that 
the hydrograph means of the scenario (A) were 
significantly different at a 95% confidence interval 
while the means of hydrographs at scenarios (B) 
and (C) were not significantly different.

Based on Figure 11 and Table 3, the sdrk30 pro-
duced the highest discharge at the three rainfall 
scenarios. At scenario (A), where the rainfall in-
tensity was the lowest, the sdrk30 caused the high-
est peak of discharge. At scenarios (B) and (C), 
where rainfall duration and intensity increased, 
respectively, the differences in discharge peaks 
were reduced. The variations of the hydrograph 

Figure 8. Two simulated realizations of soil depth created by the regression kriging (RK)

Figure 9. Hydrographs resulting from the application of soil depth ordinary kriging (OK) and regression kriging (RK) 
at 3 rainfall scenarios
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characteristics at the three scenarios could be re-
lated to differences in the soil volume (Figure 12) 
and the soil saturation effect as explained earlier 
(see Figures 9 and 10 for the explanation).

In Table 3, the hydrograph characteristics result-
ing from RK, OK and RK simulations are brought up 
together. The peak time is nearly equal at the three 
rainfall scenarios. At scenario (A), the discharge 
peaks and total discharges resulting from OK, 
RK and simulated realizations are substantially 
different while at scenarios (B) and (C) the differ-
ences were largely reduced. The Wilcox test also 
indicated significant differences in the means of 
hydrographs produced only at scenario (A). As a 
whole, various spatial patterns of soil depth have 

Table 3. Hydrograph characteristics resulting from different interpolation methods at different rainfall scenarios

sdok sdrk sdrk4 sdrk10 sdrk30

(A) 12 mm/h for 1 h

Peak time (min) 59.6 60 60 60 60

Discharge peak (l/s) 7827 9073 8417 8179 9405

Total discharge (m3) 5359 11793 13431 13438 16402

(B)12 mm/h for 4 h

Peak time (min) 299.8 299.8 299.8 299.8 299.8

Discharge peak (l/s) 15 162 15 162 15 162 15 162 15 162

Total discharge (m3) 219 123 222 643 222 559 221 474 226 143

(C) 30 mm/h for 1 h

Peak time (min) 59.8 60 60 60 60

Discharge peak (l/s) 37 549 37 533 37 516 37 495 37 510

Total discharge (m3) 83 018 86 538 86 457 85 374 90 046

sdok – ordinary kriging of soil depth; sdrk – regression kriging of soil depth; sdrk4, sdrk10, sdrk30 – the 4th, 10th and 
30th simulated realizations of soil depth

Figure 10. Comparison of the total soil volume of two 
soil depth maps; sdok = soil depth map produced by 
the OK; sdrk = soil depth map produced by the RK

Figure 11. Hydrographs resulting from the application of soil depth regression kriging (RK) simulations
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no significant effect on hydrograph modelling at 
rainfalls of high intensity and/or long duration. 

CONCLUSION

The study was conducted to find out how well 
the environmental and terrain variables could 
predict the soil depth as well as to understand 
the importance of differences in the soil depth 
variation in relation to hydrograph modelling. 
Based on the findings, the additive linear model 
of land cover and terrain parameter of overland 
flow distance to channel network better predicted 
the soil depth, though due to the lack of sufficient 
amounts of sampled data, the validation could 
not be implemented. This confirms the results 
of Kuriakose et al. (2009) and Shafique et al. 
(2011). In the present study the minor effect of 
overland flow distance to channel network may 
be a proxy for soil depth prediction. According 
to the cross-validation results, the regression 
kriging of soil depth using the “land cover” and 
“overland flow distance to channel network” vari-
ables provided better results than the ordinary 
kriging. This finding is compatible with that of 
Kuriakose et al. (2009). The RK prediction was 
however fairly uncertain (RMSE 60 mm, over a 
half the median depth 107 mm), and away from 
sample points the kriging prediction variance 
and standard deviation were of the same order 
of magnitude, about 500 mm2 and 22 mm, re-
spectively. This uncertainty is expected to have a 
major effect on any model sensitive to soil depth. 
The reason for the high uncertainty is having 
few points and poor spatial structure with high 
nugget effect. 

The hydrologic model was sensitive to different 
spatial variations of the soil depth at rainfall of low 
intensity and/or short duration. As the intensity 
or duration of rainfall increases, the hydrograph 
differences diminish, so that they can become 
insignificant. This is because at rainfalls of short 
duration or low intensity the soil may not reach 
the near saturation level; hence, the shallower soils 
are saturated faster and produce more runoff than 
the deeper soils. But at higher intensity or dura-
tion of rainfall, all soils may reach the saturation. 
Therefore, the soil depth variations make no more 
differences in the runoff generation. 
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