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This paper focuses on a description of the method used for the identification of optimal catchment descriptors
for the physical similarity approach consisting of a scheme for the identification of optimal catchment descriptors
and the procedure for finding hydrologically homogeneous regions using inverse clustering. Andrews’ curves
are used as the basis for homogeneity checking. The identification of an optimum catchment descriptor is based
on the assumption that the addition of an optimal catchment descriptor to a predefined set of catchment de-
scriptors improves the accuracy of model parameter estimation within a set of tested catchments. Two criteria
are proposed for the selection of optimal catchment descriptors — a criterion evaluating estimates of model
parameters on the basis of different potentially optimal groups of catchment descriptors, MIN, and a criterion
evaluating the improvement in model parameter estimation after the addition of a potentially optimal catchment
descriptor into the group of preliminarily identified optimal catchment descriptors, MAX. The proposed method
provides an alternative to the trial-and-error method for the identification of optimal catchment descriptors.
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Conceptual rainfall-runoff models are standard
tools that can be used for the prediction of runoff
on catchments of interest. These models have a
simpler structure than their physically-based al-
ternatives and generally lower demands on input
data (CLARKE 1973; DINGMAN 2002; WAGENER
et al. 2004). The problem with using conceptual
hydrological models is related to their applica-
tion in the so-called ungauged catchments, where
runoff records are either very short or poor, or do
not exist (SIVAPALAN et al. 2003). Hydrological
regionalisation often provides a solution to this
problem (e.g. in JARBOE & HAAN 1974; MAGETTE
et al. 1976). The regionalisation process can be
implemented (according to the applied method)
using three approaches: the spatial proximity ap-
proach (e.g. VANDEWIELE & EL1AS 1994; OUDIN et

al. 2008), the regression approach (e.g. MAGETTE
etal. 1976; XU 1999; WAGENER & WHEATER 2006)
and the physical similarity approach (e.g. ACRE-
MAN & SINCLAYR 1986; BURN & BOORMAN 1993;
PARAJKA et al. 2005; YOUNG 2006).

Nowadays, there is a large number of hydrologi-
cal studies which compare the above-mentioned
regionalisation approaches. However, these stud-
ies often give different results (e.g. PARAJKA et al.
2005; KAY et al. 2006; OUDIN et al. 2008; ZHANG
& CHIEW 2009). The differences in the results
have three main causes. The first one is related to
the input data for regionalisation. Different au-
thors used different catchment data sets in their
studies (e.g. MERZ & BLOSCHL 2004 — a set of
308 catchments in Austria, YOUNG 2006 — a set
of 260 catchments in GB, OUDIN et al. 2008 — set
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of 913 catchments in France, ZHANG & CHIEW
2009 — a set of 210 catchments in Australia) and
different sets of catchment descriptors. The second
cause lies in the hydrological model applied (HBV —
MERZ & BLOsScHL 2004; PARAJKA et al. 2005;
PDM - KAy et al. 2006; YOUNG 2006; SIMHID and
Xinanjiang — ZHANG & CHIEW 2009; TOPMO and
GR4J — OUDIN et al. 2008). The third cause is re-
lated to the fact that each regionalisation approach
employs a different procedure and that individual
studies differ in this respect (e.g. PARAJKA et al.
2005 vers. OUDIN et al. 2008).

The best regionalisation approach (based on the
published results) seems to be the spatial prox-
imity approach using an appropriate method of
parameter or output estimation. Conversely, the
worst regionalisation approach seems to be the
regression approach. The physical similarity ap-
proach generally provides better results than the
regression approach but worse results than the
spatial proximity one. Some combinations of these
regionalisation approaches were tested in order
to improve the regionalisation results. However,
these combinations often lead to no more than a
slight improvement of the regionalisation results.
ZHANG and CHIEW (2009) combined e.g. the spatial
proximity and the physical similarity approach,
but they only achieved marginally better results
than with the spatial proximity approach alone.

The spatial proximity approach is criticised in the
literature (e.g. ACREMAN & SINCLAYR 1986; Wa-
GENER & WHEATER 2006), because the geographi-
cal closeness of catchments does not guarantee
their similar hydrological behaviour. Therefore,
the physical similarity approach that compares
the closeness of catchments on the basis of their
characteristics (catchment descriptors) seems to
be the most reasonable regionalisation approach.

In the physical similarity approach, a complete
parameter set can be transferred from one gauged
catchment with the catchment descriptors closest
to the ungauged catchment (single donor approach)
or, alternatively, the parameter set for the ungauged
catchment can be estimated using parameter sets
of a few most similar gauged catchments (multiple
donor approach) (e.g. BURN & BOORMAN 1993;
MERZ & BLOsScHL 2004; PARAJKA et al. 2005;
OUDIN et al. 2008). The reason for the selection
of catchments with the most similar catchment
descriptors is based on the assumption that the
hydrological behaviour of such catchments should
be very similar to that of the ungauged catchment.
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Various methods based on the physical similarity
approach, ranging from relatively simple to com-
plex, were described and tested in the literature
(e.g. BURN 1990; BURN & BOORMAN 1993; ZRINJI &
BURN 1994; PARAJKA et al. 2005). All these meth-
ods include three steps: (1) selection of catchment
descriptors, (2) identification of homogeneous
hydrological regions (multiple donor approach)
or identification of single most similar gauged
catchments (simple donor approach), (3) estima-
tion of chosen hydrological characteristics for the
ungauged catchments (e.g. NATHAN & MCMAHON
1990; BURN & BOORMAN 1993).

Two basic catchment descriptor groups can be
used in the physical similarity approach — hydro-
logical descriptors (i.e. the descriptors derived on
the basis of rainfall-runoff records) on the one hand
and physiographic and climatic descriptors on the
other hand. BURN (1990), ZriNJI and BURN (1994)
and YADAV et al. (2007) recommend the application
of hydrological descriptors, as these descriptors may
describe the hydrological behaviour of a catchment
much more efficiently. However, derivation of the
hydrological descriptors in ungauged catchments is
impossible. Therefore, physiographic and climatic
descriptors are frequently used. Important groups of
such descriptors are soil descriptors (e.g. WAGENER
et al. 2004), land cover descriptors, climatic descrip-
tors (YouNG 2006) and morphological descriptors
(e.g. PARAJKA et al. 2005; LAAHA & BLOSCHL 2006;
OUDIN et al. 2008).

A set of catchment descriptors (and their optimal
number) is often selected using the trial-and-
error method, considering their various combi-
nations (e.g. in ZRINJI & BURN 1994; PARAJKA
et al. 2005; LAAHA & BLOSCHL 2006; OUDIN et
al. 2008). However, the choice of optimal catch-
ment descriptors depends on the catchment set
investigated and the hydrological characteristics
to be estimated (OUDIN et al. 2008). NATHAN
and McMAHON (1990) suggested an alternative
approach. They selected catchment descriptors on
the basis of stepwise regression. The catchment
descriptors which occurred most frequently in
regression equations were used in the catchment
grouping process.

This paper proposes an improved method for
optimal selection of physiographic and climatic
descriptors. The method contains an algorithm for
progressive hierarchical delimitation of hydrologi-
cally homogeneous regions and an inverse cluster-
ing method for the catchment grouping process.
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The aim of this paper is to provide an alternative
to the trial-and-error method of selecting optimal
catchment descriptors.

In the next chapters, a method for the catchment
grouping process and an algorithm for progres-
sive hierarchical delimitation of hydrologically
homogeneous regions are presented and their
advantages and disadvantages are discussed. In
the second paper of this series, the newly pro-
posed method will be illustrated on the example
of identifying optimal catchment descriptors for
the SAC-SM A model parameters (BURNASH 1995)
for catchments from the MOPEX (DUAN et al.
2006) catchment set.

MATERIAL AND METHODS

Catchment descriptors. The catchment de-
scriptor is any measurable or estimable catchment
property characterizing a given catchment. There
are two main groups of catchment descriptors —
the hydrological descriptors and the physiographic
and climatic descriptors. Hydrological descriptors
will not be considered in the following text, be-
cause their derivation in ungauged catchments is
impossible. Therefore, the term catchment descrip-
tor will only refer to physiographic and climatic
descriptors.

Physiographic and climatic descriptors can be
divided into five basic groups: (1) soil character-
istics (e.g. soil hydraulic characteristics, such as
saturated hydraulic conductivity, wilting point,
porosity or soil type, used e.g. by PARAJKA et al.
2005 or YouNG 2006), (2) geological descriptors
(e.g. areal fractions of certain rock types as used
in Yokoo et al. 2001), (3) land cover descriptors
(e.g. the fractions of forest cover and urban areas
used by Xu 1999 or OUDIN et al. 2008), (4) mor-
phological descriptors (e.g. catchment area, mean
slope and river network density as used in PARAJ-
KA et al. 2005 or WAGENER & WHEATER 2006)
and (5) climatic descriptors (e.g. mean annual
precipitation, mean annual evaporation or aridity
index used by PARAJKA et al. 2005; YouNG 2006
and OUDIN et al. 2008).

Catchment descriptors can be determined di-
rectly on the basis of field measurements or spe-
cialized maps and databases (e.g. catchment area,
land-cover descriptors). Some can also be derived
indirectly from other characteristics; using prede-
fined relationships, e.g. soil hydraulic characteris-

tics from STATSGO (CLAPP & HORNBERGER 1978;
CosByY et al. 1984) or mean annual precipitation
from PRISM (DALY et al. 1994) for MOPEX data.
These indirect methods of obtaining catchment
descriptors can obviously be affected by larger
errors (WAGENER et al. 2004).

Inverse clustering. The inverse clustering meth-
od is based on finding hydrologically homogeneous
regions around ungauged catchments. The catch-
ment descriptors (CD) of an ungauged catchment
define the location of a region centroid in the
catchment descriptor space. The total number of
such regions is given by the number of the tested
ungauged catchments. Some of the regions may
overlap, because CD values of several ungauged
catchments may be similar to each other. In this
context, the inverse clustering method is derived
from the region of influence (ROI) method pre-
sented by BURN (1989) in relation to the regional
flood frequency analysis. The gauged catchments
are assigned to particular clusters using their Eu-
clidean distance from particular ungauged catch-
ments in the catchment descriptor space:

e =[i(sz' —ss)ZT <1>

— Euclidean distance between the ungauged
catchment U in the region centroid and the
gauged catchment G assigned

sS4 or Si — standardised CD value of the descriptor

A for the ungauged catchment U (or the

gauged catchment G)

The standardisation of CDs is performed ac-
cording to the equation:

X, -X
=2 @
s
where:
S, - value of a standardised catchment descriptor A
X, —value ofa non-standardised catchment descriptor A

X,s — the mean and the standard deviation for the
catchment descriptor A calculated for all catch-
ments in the data set, respectively

CD values of ungauged catchments are stand-
ardised together with the CD values of gauged
catchments.

Andrews’ curves are used in this paper for
assessing the regions’ homogeneity. The same
homogeneity checking procedure was used by
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LaaHA and BLOscHL (2006) and NATHAN and
McMAHON (1990). These curves are derived on
the basis of CDs of particular (either ungauged or
gauged) catchments. Andrews’ curves are points
(representing catchments) with coordinates equal
to the standardised catchment descriptors values
x=[8,S, 8, ..., S ] ina multi-dimensional space
of functions. Each Andrews’ curves is defined as a
function of the argument b in the following form
(ANDREWS 1972):

S . .
f(b)= E+S2 xsin(b)+ S, x cos(b)+ S, xsin(2b)+---  (3)
where:
the argument varies within the range -m<b <m
8,85 85 .y S, — standardised CD values for a particular
catchment

The use of Andrews’ curves relies on the or-
thogonality of terms in the Fouries series. The
standardised CD value S, appears in the constant
term of Eq. (3), S, and S, are associated with the
lowest-frequency terms; S, and S are associated with
the double frequency terms and so on. The distance
between two such curves, expressed as an integral
of squared differences over the range - < b <m, is
proportional to the square of the Euclidean distance
metric Eq. (1). Thus, the multi-dimensional points
which are located close to each other in the Euclidean
space of CDs will yield similar curves. Catchments
with Andrews’ curves located close to each other
(and therefore catchments with similar values of
the catchment descriptors) are supposed to have
a similar hydrological behaviour. Using Andrews’
curves for homogeneity checking is equivalent to
using the Euclidean distance.

The proximity of Andrews’ curves of the un-
gauged catchments to those of the assigned gauged
catchments can be evaluated using the integrals of
squares of their distances as mentioned above. As
an alternative, we used the following coefficient
of determination:

S, ) 1.0

rt=1-2+%L — (4)
> 0)-7,)
where: 7

f,{b) — functional value of an Andrews’ curve of the
ungauged catchment U at the point b

Jfo(b) — functional value of an Andrews’ curve of the
gauged catchment G at the same point b

fy - mean of Andrews’ curve values of the ungauged
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catchment U over the interval <—m; 1>, which is
always equal to Sl/\/2, and B is the total number
of points

The values of f(b) for the ungauged catchment
(f,/(b)) and for the gauged catchment (f;(b)) were
calculated in this study in the interval «—1; > with
a step /500, i.e. B = 1001.
The values of coefficient of determination cal-
culated according to Eq. (4) fall within the interval
(—o0; 1> and depend on the number of CDs used.
Higher 72 means a higher similarity between the
catchments. For a perfect match of two Andrews’
curves, the value of coefficient of determination
is equal to 1. In this case, catchments have the
same values of CDs.
The gauged catchments whose Andrews’ curves
are close to the Andrews’ curve of a particular
ungauged catchment make a hydrologically ho-
mogeneous region assigned to this ungauged
catchment. The degree of similarity between the
Andrews’ curve of a gauged catchment and the
ungauged catchment in question is expressed
by the coefficient of determination according to
Eq. (4). It is then compared with a predefined
threshold value of the coefficient of determina-
tion (rf). This threshold value determines the size
and boundaries of the hydrologically homogeneous
regions of gauged catchments around particular
ungauged catchments.
Model parameters of the ungauged catchment
are then estimated as weighted averages of the
parameters of the assigned gauged catchments:
N

3w, xo5)

e — (5)

2,

p=1

where:

8 — the i-th model parameter on the ungauged catch-
ment

Gg — the known i-th model parameter on the p-th
assigned gauged catchment

w, - weight applied to the p-th gauged catchment

The inverse Euclidean distances defined by Eq. (1)
are used as weights.

Algorithm for selection of optimal catchment
descriptors. In this section, an algorithm for selec-
tion of an optimal set of catchment descriptors will
be presented. It is related to the influence of the
tested CDs on the catchment grouping process and,
thereby, on the estimation of model parameters in
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the ungauged catchments. As a result, we obtain a
set of optimal CDs that can be used in the search
for a set of gauged catchments that are most similar
to a particular ungauged catchment.

As afirst step, the available catchment descriptors
are grouped into categories (e.g. climatic descriptors,
geological descriptors, soil properties and soil types,
land-cover descriptors and morphological descrip-
tors). In the next step, a decision about the hierarchy
of CDs must be made, regarding their importance
for predicting model parameters of ungauged catch-
ments. This is done by ranking their categories and
then by ranking individual CDs within particular
CD categories. This decision represents a subjec-
tive input to the algorithm. It may be based e.g. on
the assumption that CDs from superior categories
influence the CDs from inferior categories (e.g. the
land-cover CDs will probably be influenced by cli-
matic descriptors and soil properties).

The core of the algorithm relies on the existence
of a training set of catchments such that for each of
them the optimum model parameters are known.
Then we explore how well these parameters can be
re-estimated according to Eq. (5) for a particular
catchment (regarded as ungauged for a moment)
from the parameters of similar catchments within
the same training set.

Two criteria are used in parallel for selection
of an optimal group of CDs. The MIN (minimum
error) criterion evaluates the accuracy of estima-
tion of all parameters in all ungauged catchments
for a given set of n selected CDs:

N D(®,

MIN =Y w, _ PO 100100 (6)
i=1 min (D(el ))

where:

]S(Oi) — median of absolute values of relative devia-

tions (in %) of the re-estimated model

~ parameter 6, from its optimal value eopm

min(D(B,)) — minimum value obtained among all values
]5(9i) for the model parameter 6,

w; — weight applied to the model parameter 6,

N — total number of model parameters

The median is taken over all possible ungauged
catchments for a particular set of # CDs and the
minimum among such medians is taken over all
possible sets of n CDs (with the constraints ex-
plained below). The weights in Eq. (6), assigned
to parameters, are different from the weights in
Eq. (5), assigned to catchments. The choice of
weights in Eq. (6) is specific for each study. MIN val-

ues for all tested sets of # catchment descriptors

are then compared. The set of # CDs with the low-

est MIN value is considered the best. In practice

this usually means that an optimum set of (n-1)

CDs have already been selected in the previous

step of the procedure and now various additional

CDs are added to them, one or another, to find

which of them will reduce the value of MIN most.

MAX (maximum improvement) is the second
criterion. This criterion evaluates the improve-
ment in estimation of a model parameter after
the addition of an additional CD:
N

MAX =Y w (B1(0,)-Dr(e,) 7)

i=1

where:

]5”’1(6i) — median of absolute values of relative devia-
tions (in %) of the estimated model parame-
ter 6, from the optimal parameter Bopt’i, where
the estimates are based on an optimum set of
(n-1) CDs

]5”(9) — similar median of absolute values of rela-

tive deviations (in %) of the estimated model
parameter 0, from the optimal parameter
Bopt,l., where the estimates are based on a set
of n CDs made by adding an additional CD to
the set that produced ﬁ"-l(ei)

N — total number of model parameters

S

— weight applied to each model parameter 6,
(the weights in Eq. (7) are the same as the
weights in Eq. (6))

The medians are taken over all possible ungauged
catchments. The maximum is taken over all possi-
ble additional CDs (with the constraints explained
below). MAX values for various CDs added to the
existing set of (n—1) CDs are compared. The set of
n CDs with the highest MAX value is considered
optimal. In the case where two different sets of
n CDs are indicated as the best, one according to
its smallest MIN value and the other according to
its highest MAX value,, the set with the highest
MAX value is considered optimal, i.e. the criterion
MAX is regarded more relevant.

The proposed algorithm can be summarised
as follows:

(1) Creating all possible pairs from CDs of the
first (superior) category and their testing, i.e.,
for each such pair, forming regions of simi-
lar catchments around each ungauged catch-
ment, estimation of the ungauged catchment’s
model parameters in every region, calculation
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of deviations between the estimated and the
optimal parameters and computing MIN. The
MIN values obtained in this way for all pairs
of CDs are compared and the optimal pair of
CDs is selected as the one that yields small-
est differences between the estimated model
parameters and the optimal ones.

(2) Creating all possible groups of three CDs com-
posed of the optimal pair identified in step 1
and any remaining CD of the first category or
the second (inferior) category, their testing
(following the same procedure as in step 1 but,
in addition, calculating also the MAX values for
each group of three CDs) and the selection of
the optimal group of three CDs on the basis
of their MIN and MAX values.

(3) Creating all possible groups of four CDs, com-
posed of the optimal group of three CDs iden-
tified in step 2 and any remaining CD of the
first category or the second category (inferior
to the first category) or the third category
(inferior to the second category), their testing
(the same procedure as in step 2) and selection
of the optimal group of four CDs on the basis
of their MIN and MAX values.

(4) Following the same line and looking for optimal
groups of five, six etc. CDs, composed of the
optimal CDs found in previous steps to which
further CDs of the same categories or of other
categories of lower superiority are added.

The procedure is repeated as long as the added
catchment descriptors go on refining the model
parameters estimates. This is indicated by posi-
tive MAX values. The algorithm starts with the
groups of two CDs rather than with single CDs,
because Andrews’ curves are used for homogeneity
checking within each region and the coefficient
of determination, which indicates the nearness of
particular Andrews’ curves, could not be calcu-
lated, if only single CDs were used; the Andrews’
curves would in this case become lines parallel to
the x-axis and the denominator of the second term
in the coefficient of determination would be zero.

Two auxiliary rules are applied in the algorithm
described above. The first one excludes any further

CDs of the superior category from consideration

as soon as a CD of any inferior category has been

identified as belonging to the optimal set. This
condition relies on the idea that the previously
selected CDs of the superior category may already
contain, at that moment, virtually all relevant in-
formation inherent to this category and, therefore,
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adding any further CDs of this category would
be useless. The second rule prefers a CD of an
inferior category to a CD of a superior category,
if both give very similar results (in terms of MIN
and MAX values) and if the group of previously
selected n—1 optimal CDs already contains at least
two CDs of the superior category. This condition
is substantiated by the same reasoning as the first
one and, in addition, by the requirement that the
set of optimal CDs should not be unnecessarily
large and the search for a region of gauged catch-
ments similar to the ungauged one should not be
unnecessarily complicated.

It is worth mentioning that the roles of the catch-
ment descriptors and the model parameters are
interchangeable. These two categories of “pa-
rameters” (in a more general sense of the word)
only differ in their availability or unavailability
for ungauged catchments. A second difference is
that the number of model parameters (for a par-
ticular model) is constant, while the number of
catchment descriptors is variable. However, not
all model parameters must necessarily be subject
of estimation.

DISCUSSION

The proposed method of identification of op-
timal CDs has some advantages but also some
disadvantages. The first advantage is the reduction
of the total number of CD groups tested during
the identification process in comparison with the
testing of all CD combinations in the trial-and-
error method (e.g. PARAJKA et al. 2005 or OUDIN
et al. 2008).

The next advantage of the proposed method
consists in obtaining, as interim results, some
information about the positive or negative influ-
ence of every added CD on a particular model
parameter or a group of parameters. The positive
influence means a more accurate estimate of the
parameter or a group of parameters after adding a
CD to the previously identified set of optimal CDs.
It is expressed as the positive partial MAX value
(obtained from an equation similar to Eq. (7) but
taken separately for a particular parameter) or the
positive partial MAX value for a group of parameters
(if the medians are taken over all parameters of that
group only). The negative influence of adding a
CD to a previously identified set of optimal CDs is
indicated by the increase of 13"(9) for a particular



Soil & Water Res., 8, 2013 (3): 133—140

parameter, which leads to a negative partial MAX
value for this parameter. A similar negative influ-
ence can be observed for a group of parameters
(or, in the extreme, for all parameters), too. This
information may indicate internal relationships
among CDs and model parameters. The question
is whether this information may be also useful for
estimation of parameters of other models with a
similar structure, using the same or a similar set of
catchments. It is well-known that regionalisation
results also depend on the structure of the model
used (KAY et al. 2006). Therefore, the transfer of in-
formation regarding internal relationships between
the CDs and the model parameters among models
of similar structure could be possible.

The first disadvantage relates to the fact that
the identified group of optimal CDs may not be
truly optimal. The groups of CDs identified as
the best may be different from those found by the
trial-and-error method in which all combinations
of CDs are tested.

The second disadvantage relates to the initial
phase of the algorithm, when a decision about the
hierarchy of CD categories must be made. It is a
highly subjective decision and is also affected by
the availability or unavailability of particular CD
categories. If a training set is available with all
CDs and all model parameters already known, it
may principally be possible to identify the most
relevant CDs by a sort of principal direction analy-
sis. Until this is done, the subjectivity may affect
the selection of optimal CDs and thus also the
final estimates of model parameters in ungauged
catchments. A suitable categorisation of CDs for
large and very heterogeneous catchment sets could
be based e.g. on the effect of human activities.
The superior categories of CDs could be those
that are least influenced by human activities (e.g.
climatic descriptors and geological descriptors),
while the categories of CDs more influenced by
human activities (e.g. land-cover descriptors)
could possibly be regarded as inferior.

The above-mentioned auxiliary rules applied
during the algorithm execution may also affect
the choice of optimal CDs. These rules may unfa-
vourably affect the choice of optimal CDs because
some (not yet considered) CDs from the superior
category may contain further information impor-
tant for accurate estimation of model parameters.
On the other hand, the fact that a CD from the
inferior category has been identified as optimal
in a previous step may indeed indicate that little

unused information is contained in the remaining
CDs of the superior category.
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