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Abstract 

Heřmanovský M., Pech P. (2013): Selection of catchment descriptors for the physical similarity approach. 
Part I: Theory. Soil & Water Res., 8: 133–140.

This paper focuses on a description of the method used for the identification of optimal catchment descriptors 
for the physical similarity approach consisting of a scheme for the identification of optimal catchment descriptors 
and the procedure for finding hydrologically homogeneous regions using inverse clustering. Andrews’ curves 
are used as the basis for homogeneity checking. The identification of an optimum catchment descriptor is based 
on the assumption that the addition of an optimal catchment descriptor to a predefined set of catchment de-
scriptors improves the accuracy of model parameter estimation within a set of tested catchments. Two criteria 
are proposed for the selection of optimal catchment descriptors – a criterion evaluating estimates of model 
parameters on the basis of different potentially optimal groups of catchment descriptors, MIN, and a criterion 
evaluating the improvement in model parameter estimation after the addition of a potentially optimal catchment 
descriptor into the group of preliminarily identified optimal catchment descriptors, MAX. The proposed method 
provides an alternative to the trial-and-error method for the identification of optimal catchment descriptors.
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Conceptual rainfall-runoff models are standard 
tools that can be used for the prediction of runoff 
on catchments of interest. These models have a 
simpler structure than their physically-based al-
ternatives and generally lower demands on input 
data (Clarke 1973; Dingman 2002; Wagener 
et al. 2004). The problem with using conceptual 
hydrological models is related to their applica-
tion in the so-called ungauged catchments, where 
runoff records are either very short or poor, or do 
not exist (Sivapalan et al. 2003). Hydrological 
regionalisation often provides a solution to this 
problem (e.g. in Jarboe & Haan 1974; Magette 
et al. 1976). The regionalisation process can be 
implemented (according to the applied method) 
using three approaches: the spatial proximity ap-
proach (e.g. Vandewiele & Elias 1994; Oudin et 

al. 2008), the regression approach (e.g. Magette 
et al. 1976; Xu 1999; Wagener & Wheater 2006) 
and the physical similarity approach (e.g. Acre-
man & Sinclayr 1986; Burn & Boorman 1993; 
Parajka et al. 2005; Young 2006).

Nowadays, there is a large number of hydrologi-
cal studies which compare the above-mentioned 
regionalisation approaches. However, these stud-
ies often give different results (e.g. Parajka et al. 
2005; Kay et al. 2006; Oudin et al. 2008; Zhang 
& Chiew 2009). The differences in the results 
have three main causes. The first one is related to 
the input data for regionalisation. Different au-
thors used different catchment data sets in their 
studies (e.g. Merz & Blöschl 2004 – a set of 
308 catchments in Austria, Young 2006 – a set 
of 260 catchments in GB, Oudin et al. 2008 – set 
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of 913 catchments in France, Zhang & Chiew 
2009 – a set of 210 catchments in Australia) and 
different sets of catchment descriptors. The second 
cause lies in the hydrological model applied (HBV – 
Merz & Blöschl 2004; Parajka et al. 2005; 
PDM – Kay et al. 2006; Young 2006; SIMHID and 
Xinanjiang – Zhang & Chiew 2009; TOPMO and 
GR4J – Oudin et al. 2008). The third cause is re-
lated to the fact that each regionalisation approach 
employs a different procedure and that individual 
studies differ in this respect (e.g. Parajka et al. 
2005 vers. Oudin et al. 2008).

The best regionalisation approach (based on the 
published results) seems to be the spatial prox-
imity approach using an appropriate method of 
parameter or output estimation. Conversely, the 
worst regionalisation approach seems to be the 
regression approach. The physical similarity ap-
proach generally provides better results than the 
regression approach but worse results than the 
spatial proximity one. Some combinations of these 
regionalisation approaches were tested in order 
to improve the regionalisation results. However, 
these combinations often lead to no more than a 
slight improvement of the regionalisation results. 
Zhang and Chiew (2009) combined e.g. the spatial 
proximity and the physical similarity approach, 
but they only achieved marginally better results 
than with the spatial proximity approach alone.

The spatial proximity approach is criticised in the 
literature (e.g. Acreman & Sinclayr 1986; Wa-
gener & Wheater 2006), because the geographi-
cal closeness of catchments does not guarantee 
their similar hydrological behaviour. Therefore, 
the physical similarity approach that compares 
the closeness of catchments on the basis of their 
characteristics (catchment descriptors) seems to 
be the most reasonable regionalisation approach.

In the physical similarity approach, a complete 
parameter set can be transferred from one gauged 
catchment with the catchment descriptors closest 
to the ungauged catchment (single donor approach) 
or, alternatively, the parameter set for the ungauged 
catchment can be estimated using parameter sets 
of a few most similar gauged catchments (multiple 
donor approach) (e.g. Burn & Boorman 1993; 
Merz & Blöschl 2004; Parajka et al. 2005; 
Oudin et al. 2008). The reason for the selection 
of catchments with the most similar catchment 
descriptors is based on the assumption that the 
hydrological behaviour of such catchments should 
be very similar to that of the ungauged catchment.

Various methods based on the physical similarity 
approach, ranging from relatively simple to com-
plex, were described and tested in the literature 
(e.g. Burn 1990; Burn & Boorman 1993; Zrinji & 
Burn 1994; Parajka et al. 2005). All these meth-
ods include three steps: (1) selection of catchment 
descriptors, (2) identification of homogeneous 
hydrological regions (multiple donor approach) 
or identification of single most similar gauged 
catchments (simple donor approach), (3) estima-
tion of chosen hydrological characteristics for the 
ungauged catchments (e.g. Nathan & McMahon 
1990; Burn & Boorman 1993).

Two basic catchment descriptor groups can be 
used in the physical similarity approach – hydro-
logical descriptors (i.e. the descriptors derived on 
the basis of rainfall-runoff records) on the one hand 
and physiographic and climatic descriptors on the 
other hand. Burn (1990), Zrinji and Burn (1994) 
and Yadav et al. (2007) recommend the application 
of hydrological descriptors, as these descriptors may 
describe the hydrological behaviour of a catchment 
much more efficiently. However, derivation of the 
hydrological descriptors in ungauged catchments is 
impossible. Therefore, physiographic and climatic 
descriptors are frequently used. Important groups of 
such descriptors are soil descriptors (e.g. Wagener 
et al. 2004), land cover descriptors, climatic descrip-
tors (Young 2006) and morphological descriptors 
(e.g. Parajka et al. 2005; Laaha & Blöschl 2006; 
Oudin et al. 2008).

A set of catchment descriptors (and their optimal 
number) is often selected using the trial-and-
error method, considering their various combi-
nations (e.g. in Zrinji & Burn 1994; Parajka 
et al. 2005; Laaha & Blöschl 2006; Oudin et 
al. 2008). However, the choice of optimal catch-
ment descriptors depends on the catchment set 
investigated and the hydrological characteristics 
to be estimated (Oudin et al. 2008). Nathan 
and McMahon (1990) suggested an alternative 
approach. They selected catchment descriptors on 
the basis of stepwise regression. The catchment 
descriptors which occurred most frequently in 
regression equations were used in the catchment 
grouping process.

This paper proposes an improved method for 
optimal selection of physiographic and climatic 
descriptors. The method contains an algorithm for 
progressive hierarchical delimitation of hydrologi-
cally homogeneous regions and an inverse cluster-
ing method for the catchment grouping process. 
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The aim of this paper is to provide an alternative 
to the trial-and-error method of selecting optimal 
catchment descriptors.

In the next chapters, a method for the catchment 
grouping process and an algorithm for progres-
sive hierarchical delimitation of hydrologically 
homogeneous regions are presented and their 
advantages and disadvantages are discussed. In 
the second paper of this series, the newly pro-
posed method will be illustrated on the example 
of identifying optimal catchment descriptors for 
the SAC-SMA model parameters (Burnash 1995) 
for catchments from the MOPEX (Duan et al. 
2006) catchment set. 

MATERIAL AND METHODS

Catchment descriptors. The catchment de-
scriptor is any measurable or estimable catchment 
property characterizing a given catchment. There 
are two main groups of catchment descriptors – 
the hydrological descriptors and the physiographic 
and climatic descriptors. Hydrological descriptors 
will not be considered in the following text, be-
cause their derivation in ungauged catchments is 
impossible. Therefore, the term catchment descrip-
tor will only refer to physiographic and climatic 
descriptors. 

Physiographic and climatic descriptors can be 
divided into five basic groups: (1) soil character-
istics (e.g. soil hydraulic characteristics, such as 
saturated hydraulic conductivity, wilting point, 
porosity or soil type, used e.g. by Parajka et al. 
2005 or Young 2006), (2) geological descriptors 
(e.g. areal fractions of certain rock types as used 
in Yokoo et al. 2001), (3) land cover descriptors 
(e.g. the fractions of forest cover and urban areas 
used by Xu 1999 or Oudin et al. 2008), (4) mor-
phological descriptors (e.g. catchment area, mean 
slope and river network density as used in Paraj-
ka et al. 2005 or Wagener & Wheater 2006) 
and (5) climatic descriptors (e.g. mean annual 
precipitation, mean annual evaporation or aridity 
index used by Parajka et al. 2005; Young 2006 
and Oudin et al. 2008).

Catchment descriptors can be determined di-
rectly on the basis of field measurements or spe-
cialized maps and databases (e.g. catchment area, 
land-cover descriptors). Some can also be derived 
indirectly from other characteristics; using prede-
fined relationships, e.g. soil hydraulic characteris-

tics from STATSGO (Clapp & Hornberger 1978; 
Cosby et al. 1984) or mean annual precipitation 
from PRISM (Daly et al. 1994) for MOPEX data. 
These indirect methods of obtaining catchment 
descriptors can obviously be affected by larger 
errors (Wagener et al. 2004).

Inverse clustering. The inverse clustering meth-
od is based on finding hydrologically homogeneous 
regions around ungauged catchments. The catch-
ment descriptors (CD) of an ungauged catchment 
define the location of a region centroid in the 
catchment descriptor space. The total number of 
such regions is given by the number of the tested 
ungauged catchments. Some of the regions may 
overlap, because CD values of several ungauged 
catchments may be similar to each other. In this 
context, the inverse clustering method is derived 
from the region of influence (ROI) method pre-
sented by Burn (1989) in relation to the regional 
flood frequency analysis. The gauged catchments 
are assigned to particular clusters using their Eu-
clidean distance from particular ungauged catch-
ments in the catchment descriptor space:

 	  (1)

where:
dUG	 – Euclidean distance between the ungauged 

catchment U in the region centroid and the 
gauged catchment G assigned

S UA or S GA	 – standardised CD value of the descriptor 
A for the ungauged catchment U (or the 
gauged catchment G)

The standardisation of CDs is performed ac-
cording to the equation:

 	  (2)

where:
SA – value of a standardised catchment descriptor A
XA	 – value of a non-standardised catchment descriptor A
X–, s	 – the mean and the standard deviation for the 

catchment descriptor A calculated for all catch-
ments in the data set, respectively

CD values of ungauged catchments are stand-
ardised together with the CD values of gauged 
catchments.

Andrews’ curves are used in this paper for 
assessing the regions’ homogeneity. The same 
homogeneity checking procedure was used by 
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Laaha and Blöschl (2006) and Nathan and 
McMahon (1990). These curves are derived on 
the basis of CDs of particular (either ungauged or 
gauged) catchments. Andrews’ curves are points 
(representing catchments) with coordinates equal 
to the standardised catchment descriptors values 
x = [S1, S2, S3, ..., Sn] in a multi-dimensional space 
of functions. Each Andrews’ curves is defined as a 
function of the argument b in the following form 
(Andrews 1972):

 	  (3)

where:
the argument varies within the range –π ≤ b ≤ π
S1, S2, S3, ..., Sn	– standardised CD values for a particular 

catchment

The use of Andrews’ curves relies on the or-
thogonality of terms in the Fouries series. The 
standardised CD value S1 appears in the constant 
term of Eq. (3), S2 and S3 are associated with the 
lowest-frequency terms; S4 and S5 are associated with 
the double frequency terms and so on. The distance 
between two such curves, expressed as an integral 
of squared differences over the range –π ≤ b ≤ π, is 
proportional to the square of the Euclidean distance 
metric Eq. (1). Thus, the multi-dimensional points 
which are located close to each other in the Euclidean 
space of CDs will yield similar curves. Catchments 
with Andrews’ curves located close to each other 
(and therefore catchments with similar values of 
the catchment descriptors) are supposed to have 
a similar hydrological behaviour. Using Andrews’ 
curves for homogeneity checking is equivalent to 
using the Euclidean distance. 

The proximity of Andrews’ curves of the un-
gauged catchments to those of the assigned gauged 
catchments can be evaluated using the integrals of 
squares of their distances as mentioned above. As 
an alternative, we used the following coefficient 
of determination:

 	  (4)

where:
fU(b)	– functional value of an Andrews’ curve of the 

ungauged catchment U at the point b
fG(b)	 – functional value of an Andrews’ curve of the 

gauged catchment G at the same point b
f-U	 – mean of Andrews’ curve values of the ungauged 

catchment U over the interval ‹–π; π›, which is 
always equal to S1/√2, and B is the total number 
of points

The values of f(b) for the ungauged catchment 
(fU(b)) and for the gauged catchment (fG(b)) were 
calculated in this study in the interval ‹–π; π› with 
a step π/500, i.e. B = 1001.

The values of coefficient of determination cal-
culated according to Eq. (4) fall within the interval 
₍–∞; 1› and depend on the number of CDs used. 
Higher r2 means a higher similarity between the 
catchments. For a perfect match of two Andrews’ 
curves, the value of coefficient of determination 
is equal to 1. In this case, catchments have the 
same values of CDs.

The gauged catchments whose Andrews’ curves 
are close to the Andrews’ curve of a particular 
ungauged catchment make a hydrologically ho-
mogeneous region assigned to this ungauged 
catchment. The degree of similarity between the 
Andrews’ curve of a gauged catchment and the 
ungauged catchment in question is expressed 
by the coefficient of determination according to 
Eq. (4). It is then compared with a predefined 
threshold value of the coefficient of determina-
tion (rt

2). This threshold value determines the size 
and boundaries of the hydrologically homogeneous 
regions of gauged catchments around particular 
ungauged catchments.

Model parameters of the ungauged catchment 
are then estimated as weighted averages of the 
parameters of the assigned gauged catchments:

 	  (5)

where:
θi

U	 – the i-th model parameter on the ungauged catch-
ment

θip
G	 – the known i-th model parameter on the p-th 

assigned gauged catchment
wp – weight applied to the p-th gauged catchment

The inverse Euclidean distances defined by Eq. (1) 
are used as weights. 

Algorithm for selection of optimal catchment 
descriptors. In this section, an algorithm for selec-
tion of an optimal set of catchment descriptors will 
be presented. It is related to the influence of the 
tested CDs on the catchment grouping process and, 
thereby, on the estimation of model parameters in 
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the ungauged catchments. As a result, we obtain a 
set of optimal CDs that can be used in the search 
for a set of gauged catchments that are most similar 
to a particular ungauged catchment.

As a first step, the available catchment descriptors 
are grouped into categories (e.g. climatic descriptors, 
geological descriptors, soil properties and soil types, 
land-cover descriptors and morphological descrip-
tors). In the next step, a decision about the hierarchy 
of CDs must be made, regarding their importance 
for predicting model parameters of ungauged catch-
ments. This is done by ranking their categories and 
then by ranking individual CDs within particular 
CD categories. This decision represents a subjec-
tive input to the algorithm. It may be based e.g. on 
the assumption that CDs from superior categories 
influence the CDs from inferior categories (e.g. the 
land-cover CDs will probably be influenced by cli-
matic descriptors and soil properties).

The core of the algorithm relies on the existence 
of a training set of catchments such that for each of 
them the optimum model parameters are known. 
Then we explore how well these parameters can be 
re-estimated according to Eq. (5) for a particular 
catchment (regarded as ungauged for a moment) 
from the parameters of similar catchments within 
the same training set.

Two criteria are used in parallel for selection 
of an optimal group of CDs. The MIN (minimum 
error) criterion evaluates the accuracy of estima-
tion of all parameters in all ungauged catchments 
for a given set of n selected CDs:

 	  (6)

where:
D~(θi)	 – median of absolute values of relative devia-

tions (in %) of the re-estimated model 
parameter θi from its optimal value θopt,i

min(D~(θi))	– minimum value obtained among all values 
D~(θi) for the model parameter θi

wi	 – weight applied to the model parameter θi 
N – total number of model parameters

The median is taken over all possible ungauged 
catchments for a particular set of n CDs and the 
minimum among such medians is taken over all 
possible sets of n CDs (with the constraints ex-
plained below). The weights in Eq. (6), assigned 
to parameters, are different from the weights in 
Eq. (5), assigned to catchments. The choice of 
weights in Eq. (6) is specific for each study. MIN val-

ues for all tested sets of n catchment descriptors 
are then compared. The set of n CDs with the low-
est MIN value is considered the best. In practice 
this usually means that an optimum set of (n–1) 
CDs have already been selected in the previous 
step of the procedure and now various additional 
CDs are added to them, one or another, to find 
which of them will reduce the value of MIN most.

MAX (maximum improvement) is the second 
criterion. This criterion evaluates the improve-
ment in estimation of a model parameter after 
the addition of an additional CD: 

 	  (7)

where:
D~n–1(θi)	 – median of absolute values of relative devia-

tions (in %) of the estimated model parame-
ter θi from the optimal parameter θopt,i, where 
the estimates are based on an optimum set of 
(n–1) CDs

D~n(θi)	 – similar median of absolute values of rela-
tive deviations (in %) of the estimated model 
parameter θi from the optimal parameter 
θopt,i, where the estimates are based on a set 
of n CDs made by adding an additional CD to 
the set that produced D~n–1(θi) 

N – total number of model parameters
wi	 – weight applied to each model parameter θi 

(the weights in Eq. (7) are the same as the 
weights in Eq. (6))

The medians are taken over all possible ungauged 
catchments. The maximum is taken over all possi-
ble additional CDs (with the constraints explained 
below). MAX values for various CDs added to the 
existing set of (n–1) CDs are compared. The set of 
n CDs with the highest MAX value is considered 
optimal. In the case where two different sets of 
n CDs are indicated as the best, one according to 
its smallest MIN value and the other according to 
its highest MAX value,, the set with the highest 
MAX value is considered optimal, i.e. the criterion 
MAX is regarded more relevant. 

The proposed algorithm can be summarised 
as follows:
(1) Creating all possible pairs from CDs of the 

first (superior) category and their testing, i.e., 
for each such pair, forming regions of simi-
lar catchments around each ungauged catch-
ment, estimation of the ungauged catchment’s 
model parameters in every region, calculation 
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of deviations between the estimated and the 
optimal parameters and computing MIN. The 
MIN values obtained in this way for all pairs 
of CDs are compared and the optimal pair of 
CDs is selected as the one that yields small-
est differences between the estimated model 
parameters and the optimal ones.

(2)  Creating all possible groups of three CDs com-
posed of the optimal pair identified in step 1 
and any remaining CD of the first category or 
the second (inferior) category, their testing 
(following the same procedure as in step 1 but, 
in addition, calculating also the MAX values for 
each group of three CDs) and the selection of 
the optimal group of three CDs on the basis 
of their MIN and MAX values.

(3)  Creating all possible groups of four CDs, com-
posed of the optimal group of three CDs iden-
tified in step 2 and any remaining CD of the 
first category or the second category (inferior 
to the first category) or the third category 
(inferior to the second category), their testing 
(the same procedure as in step 2) and selection 
of the optimal group of four CDs on the basis 
of their MIN and MAX values.

(4)  Following the same line and looking for optimal 
groups of five, six etc. CDs, composed of the 
optimal CDs found in previous steps to which 
further CDs of the same categories or of other 
categories of lower superiority are added.

The procedure is repeated as long as the added 
catchment descriptors go on refining the model 
parameters estimates. This is indicated by posi-
tive MAX values. The algorithm starts with the 
groups of two CDs rather than with single CDs, 
because Andrews’ curves are used for homogeneity 
checking within each region and the coefficient 
of determination, which indicates the nearness of 
particular Andrews’ curves, could not be calcu-
lated, if only single CDs were used; the Andrews’ 
curves would in this case become lines parallel to 
the x-axis and the denominator of the second term 
in the coefficient of determination would be zero. 

Two auxiliary rules are applied in the algorithm 
described above. The first one excludes any further 
CDs of the superior category from consideration 
as soon as a CD of any inferior category has been 
identified as belonging to the optimal set. This 
condition relies on the idea that the previously 
selected CDs of the superior category may already 
contain, at that moment, virtually all relevant in-
formation inherent to this category and, therefore, 

adding any further CDs of this category would 
be useless. The second rule prefers a CD of an 
inferior category to a CD of a superior category, 
if both give very similar results (in terms of MIN 
and MAX values) and if the group of previously 
selected n–1 optimal CDs already contains at least 
two CDs of the superior category. This condition 
is substantiated by the same reasoning as the first 
one and, in addition, by the requirement that the 
set of optimal CDs should not be unnecessarily 
large and the search for a region of gauged catch-
ments similar to the ungauged one should not be 
unnecessarily complicated.

It is worth mentioning that the roles of the catch-
ment descriptors and the model parameters are 
interchangeable. These two categories of “pa-
rameters” (in a more general sense of the word) 
only differ in their availability or unavailability 
for ungauged catchments. A second difference is 
that the number of model parameters (for a par-
ticular model) is constant, while the number of 
catchment descriptors is variable. However, not 
all model parameters must necessarily be subject 
of estimation.

DISCUSSION

The proposed method of identification of op-
timal CDs has some advantages but also some 
disadvantages. The first advantage is the reduction 
of the total number of CD groups tested during 
the identification process in comparison with the 
testing of all CD combinations in the trial-and-
error method (e.g. Parajka et al. 2005 or Oudin 
et al. 2008).

The next advantage of the proposed method 
consists in obtaining, as interim results, some 
information about the positive or negative influ-
ence of every added CD on a particular model 
parameter or a group of parameters. The positive 
influence means a more accurate estimate of the 
parameter or a group of parameters after adding a 
CD to the previously identified set of optimal CDs. 
It is expressed as the positive partial MAX value 
(obtained from an equation similar to Eq. (7) but 
taken separately for a particular parameter) or the 
positive partial MAX value for a group of parameters 
(if the medians are taken over all parameters of that 
group only). The negative influence of adding a 
CD to a previously identified set of optimal CDs is 
indicated by the increase of D~n(θi) for a particular 
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parameter, which leads to a negative partial MAX 
value for this parameter. A similar negative influ-
ence can be observed for a group of parameters 
(or, in the extreme, for all parameters), too. This 
information may indicate internal relationships 
among CDs and model parameters. The question 
is whether this information may be also useful for 
estimation of parameters of other models with a 
similar structure, using the same or a similar set of 
catchments. It is well-known that regionalisation 
results also depend on the structure of the model 
used (Kay et al. 2006). Therefore, the transfer of in-
formation regarding internal relationships between 
the CDs and the model parameters among models 
of similar structure could be possible.

The first disadvantage relates to the fact that 
the identified group of optimal CDs may not be 
truly optimal. The groups of CDs identified as 
the best may be different from those found by the 
trial-and-error method in which all combinations 
of CDs are tested.

The second disadvantage relates to the initial 
phase of the algorithm, when a decision about the 
hierarchy of CD categories must be made. It is a 
highly subjective decision and is also affected by 
the availability or unavailability of particular CD 
categories. If a training set is available with all 
CDs and all model parameters already known, it 
may principally be possible to identify the most 
relevant CDs by a sort of principal direction analy-
sis. Until this is done, the subjectivity may affect 
the selection of optimal CDs and thus also the 
final estimates of model parameters in ungauged 
catchments. A suitable categorisation of CDs for 
large and very heterogeneous catchment sets could 
be based e.g. on the effect of human activities. 
The superior categories of CDs could be those 
that are least influenced by human activities (e.g. 
climatic descriptors and geological descriptors), 
while the categories of CDs more influenced by 
human activities (e.g. land-cover descriptors) 
could possibly be regarded as inferior.

The above-mentioned auxiliary rules applied 
during the algorithm execution may also affect 
the choice of optimal CDs. These rules may unfa-
vourably affect the choice of optimal CDs because 
some (not yet considered) CDs from the superior 
category may contain further information impor-
tant for accurate estimation of model parameters. 
On the other hand, the fact that a CD from the 
inferior category has been identified as optimal 
in a previous step may indeed indicate that little 

unused information is contained in the remaining 
CDs of the superior category.
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