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Abstract

Kovér P, Hrabalikova M., Neruda M., Neruda R., Srejber J., Jelinkova A., Ba¢inova H. (2015): Choosing an appropri-
ate hydrological model for rainfall-runoff extremes in small catchments. Soil & Water Res., 10: 137-146.

Real and scenario prognosis in engineering hydrology often involves using simulation techniques of mathemati-
cal modelling the rainfall-runoff processes in small catchments. These catchments are often up to 50 km?in area,
their character is torrential, and the type of water flow is super-critical. Many of them are ungauged. The damage
in the catchments is enormous, and the length of the torrents is about 23% of the total length of small rivers in the
Czech Republic. The Sméda experimental mountainous catchment (with the Bily potok downstream gauge) in the
Jizerské hory Mts. was chosen as a model area for simulating extreme rainfall-runoff processes using two different
models. For the purposes of evaluating and simulating significant rainfall-runoff episodes, we chose the KINFIL
physically-based 2D hydrological model, and ANN, an artificial neural network mathematical “learning” model. A
neural network is a model of the non-linear functional dependence between inputs and outputs with free parameters
(weights), which are created by iterative gradient learning algorithms utilizing calibration data. The two models are
entirely different. They are based on different principles, but both require the same time series (rainfall-runoff)
data. However, the parameters of the models are fully different, without any physical comparison. The strength of
KINFIL is that there are physically clear parameters corresponding to adequate hydrological process equations,
while the strength of ANN lies in the “learning procedure”. Their common property is the rule that the greater
the number of measured rainfall-runoff events (pairs), the better fitted the simulation results can be expected.

Keywords: flood prediction; infiltration; Jizerské hory Mts.; kinematic wave; neural network

Rapidly developing catastrophic situations caused
by extreme rainfall-runoff episodes can often be en-
countered in small mountainous catchments, where
changes in the runoff and sediment regime can be
enormous. This is the situation for the creeks in the
Jizerské Hory Mts., where the Sméda catchment was
chosen as the case study for this paper. Convective
high-intensity precipitation on a relatively small
catchment area, its high inclination and the slope
of the longitudinal profile of the river, channel de-

struction and its surroundings impacted by erosion
often cause a great damage (KovAR & KROVAK 2002).

Animprovement in runoff prediction methods and
in determining the volumes of flooding waves are
of economic as well as environmental importance
(CAMROVA & JiLKOVA 2006). N-year flood discharges
are the basic hydrological sources for proposing
measures against floods and erosion. Over the past
few decades, growing importance has been given
to the use of mathematical models of the rainfall-
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runoff process, based physically on infiltration, and
to monitoring surface runoff and its movement on
slopes and on hydrographic networks. This case study
shows the ways of identifying the design runoff in
small basins using the KINFIL model (KovAR 1992).
This model combines the CN curves method and the
solution of infiltration equations (MOREL-SEYTOUX
& VERDIN 1981). The simulation of surface runoff is
resolved by the kinematic wave model (SINGH 1976,
1996), taking into account the detailed topography
of the basin. The topographic terrain values are cal-
cualted by ArcGIS software. The accuracy of these
mathematical modelling methods and their connection
to GIS systems is adequate for the accuracy of the
mathematical description of physical processes and
to the range and reliability of the data set used herein.

The second model used in this paper is an artifi-
cial neural network consisting of units called neurons
that transfer and process information in the form of
excitations. The training of the neural network can be
imagined as modifications to the network parameters
in such a way that the output neurons are excited by
certain combinations of input signals (RUMELHART &
McCLELLAND 1986). The number of neurons and their
connections are determined by the topology of the net-
work. According to the function, we distinguish input,
output, and intermediate neurons. The input neurons
correspond with receptors, the output neurons are
connected to effectors, and the intermediate neurons
constitute the mediators of the information transfer
between inputs and outputs (LIPPMANN 1987). These
ways of excitation transfer are referred to as paths.
The information is processed on paths by means of
changes in the states of neurons along the correspond-
ing paths. The states of all neurons and connections
(synaptic weights) represent the configuration of a
network. Training the neural network involves setting
the configuration on the basis of data representing
pairs of inputs with desired outputs. This approach is
called supervised learning, and it most often utilizes
gradient-based nonlinear algorithms, called error back
propagation (NERUDA et al. 2005).

The goal of our study is to compare the KINFIL
and ANN approaches, to identify their strengths
and weaknesses.

MATERIAL AND METHODS

Description of the Sméda catchment. The river
Sméda rises in the peat lands of the Jizerské hory
Mts. It is the border flow between the Czech Re-
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public and Poland (Figure 1a). Since 1957, a water

level recorder has been installed in the Bily potok

station and a number of precipitation gauges have
been set up in Hejnice, Nové Mésto pod Smrkem,

Visnova, and Bily Potok. This catchment with its

measured rainfall-runoff episodes is often a source of

flood disasters, which will be analyzed in this study.

Table 1 shows the major physical-geometric catch-

ment characteristics of the Bily Potok downstream

water level recorder.

The Sméda brook is classified as having class I and
class II basic water quality — the water is classified
as unpolluted or slightly polluted. Table 2 shows the
basic hydrological data in the Smédd catchment,
e.g. the average yearly precipitation and the N-years
runoff values.

In the following description, the basic geological,
soil, geomorphological, and land use characteristics
of this part of the Jizerské hory Mts. are presented as
a consequence of the effects of major rainfall-runoff
episodes. For understanding the destruction in the
area caused by high surface outflow and erosion
processes, the following considerations should be
taken into account:

- The geological basement of the Jizerské hory mas-
sif is composed of biotic coarse granular or por-
phyritic granite, easily eroded and crumbled into
fine fractions.

— Most of the soils are shallow, light, coarse granular
loamy-sandy soils of peat mountain Podzol type,
peaty soils, and rocky rubble on steep slopes.

— The unsuitable structure and texture of the soils
and the softness of the soil profile with a lack of
humus means that the soils are easily eroded.

— The Jizerské hory Mts. have one of the highest
precipitation frequencies and amplitudes of all
Central Europe.

— Steep terrain slopes (30-50%) and quite long slope
lengths (400—1000 m) provide conditions for gully
erosion of whole areas.

Table 1. Physical-geometric characteristics of the Sméda
catchment, Bily Potok downstream gauge

Characteristics Value
Basin area (km?) 26.58
Thalweg length (km) 13.3
Thalweg slope (-) 0.069
Altitude (m a.s.l.) 497-1123
Basin average width (km) 1.96
Basin slope (Herbst) (%) 22.2
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Figure 1. Main characteristics of the Sméda catchment

The vegetation in the Sméda basin consists mainly
of spruce (80-90%), beech and maple trees (up to
15%). Dwarf pines occur in the peatlands, and birches
and rowans are scattered in coppices. However, there
is an intensive new planting programme, and the
herbaceous small reed vegetation that has grown
up in the clearings after deforestation is gradually
being replaced. The species composition now being
planted is different from the old species composi-

c) Land Use ’X
N
Bily Poto
Legend
@® OUTLET

~\_ SMEDARIVER
“\_ TRIBUTARIES
% WETTLANDS

[ BUILT UP AREA
GRASSLAND
B FoReESTAREA

0 1 2 Km
| — —

d) Slope N

7

z)

Legend

. 39.6°

Czech University of Life Sciencies Prague, 2014/2015

tion, and includes species that are more resilient to
natural disasters, and that help preventing forest
erosion and infiltration.

GIS mapping of the Sméda catchment. In the
present study, GIS tools were used to create a digital
model of the terrain (DMT), hydrological soil groups,
economic land use, and the distribution into the sub-
catchments. We used ArcGIS 10.2 software tools,
with the Spatial Analyst extension. The starting-point

Table 2. Hydrological data of the Sméda basin at Bily Potok, the outlet station (Czech Hydrometeorological Institute)

Smeda Precipitation Runoff N-year runoffs (m?/s)
basin (mm) Q Q, Q, Qo Qy Qs Qi
Bily potok 1426 1116 21 33 54 74 97 132 162
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materials were vector base datasets derived from the
Orthophoto map and the Basic Map of the Czech
Republic 1:10 000 (ZABAGED II), digital map BPE],
and datasets downloaded from the HEIS database.
The resulting products are the maps shown in Fig-
ure 1: Major characteristics of the Sméda catchment,
comprising: (a) orthophotos, (b) height ratios and
schematization of sub-catchments, (c) slope, and
(d) land use. The synthetic product is a geographi-
cal map containing the hydrological information
required for the KINFIL model. This data is compiled
in Table 3 and shown in Figure 2, which provides a
geometrical schematization of the sub-catchments,
including land use. Table 3 provides a numbering
system for the geometrized areas of the catchment

Table 3. Schematization of the Smédé catchment

doi: 10.17221/16/2015-SWR

(see Figure 2) away from the catchment boundary
to the downstream gauge profile, distinguishing the
upper segment (S) and the plates of the left (L) and
right (R) side of the flow direction of the Sméda river.

The KINFIL model. The KINFIL model is based
on a combination of infiltration theory, put forward
by Green and Ampt and modified by Morel-Seytoux
(MOREL-SEYTOUX & VERDIN 1981), and direct run-
off transformation, resolved using a kinematic wave
(LAX & WENDROFF 1960; KIBLER & WOOLHISER
1970; BEVEN 1979; SINGH 1996).

The task of the infiltration part of the model is
to determine the parameters of saturated hydraulic
conductivity K and the retention coefficient of the
suction pressure Sf(for the state of field capacity FC).

Other  Built up
Cascade/ Area Lengt.h Area Avgrage Length  Slope Grassland ~ Forest area area
subcatchment (km?) of basin - Plate (km?) width (km) (=)
(km) (km) (%)

S11 112 126 0.178 - 99.30 - 0.70
S1 1.64 1.86 0.88

S12 0.53 0.60 0.114 - 94.60 - 5.40
R1 1.84 1.35 R1 1.84 1.36 1.35 0.070 - 99.60 - 0.40

R21 0.96 0.50 0.097 - 99.60 - 0.40
R2 1.44 0.75 1.93

R 22 0.48 0.25 0.204 - 99.90 - 0.10

R 31 1.08 0.98 0.213 - 100.00 - -
R3 1.99 1.80 1.10

R 32 0.91 0.83 0.394 - 99.90 - 0.10

R 41 0.97 0.89 0.243 - 91.50 - 7.80
R4 191 1.75 1.09

R 42 0.95 0.87 0.424 - 100.00 - -

R 51 0.10 0.05 0.119 - 100.00 - -
R5 1.79 0.78 R 52 0.41 2.29 0.18 0.216 - 100.00 - -

R 53 1.27 0.56 0.269 1.10 81.10 1.70 16.10

R61 0.50 0.23 0.156 - 100.00 - -
R6 3.30 1.49 R 62 1.33 2.22 0.60 0.218 - 100.00 - -

R 63 1.47 0.66 0.380 0.65 93.75 3.06 2.54

R71 0.40 0.41 0.180 - 100.00 - -
R7 3.46 3.50 R72 1.68 0.99 1.70 0.317 2.90 95.40 1.70 -

R73 1.38 1.40 0.147 34.70 42.50 15.00 7.80

L11 0.62 0.41 0.193 - 100.00 - -
L1 1.79 1.18 1.51

L12 1.17 0.77 0.147 - 99.70 - 0.30

L21 1.34 0.73 0.086 - 100.00 - -
L2 2.25 1.23 1.83

L22 0.91 0.50 0.154 - 99.93 - 0.07

L31 0.36 0.23 0.157 - 100.00 - -
L3 2.33 1.48 L32 1.61 1.58 1.02 0.415 - 98.40 - 1.60

L33 0.36 0.23 0.273 - 94.60 - 5.40

L 41 0.23 0.23 0.171 - 100.00 - -
L4 2.75 2.67 L 42 1.03 1.03 1.00 0.403 - 100.00 - -

L 43 1.49 1.45 0.164 24.70 52.00 2.00 21.30
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Figure 2. The Smédd catchment (BP) — distribution into
sub-catchments

The solution makes use of previously derived relation-
ships between these parameters and the values of the
runoff curve numbers CN (US SCS 1986). The CN in-
dex values correspond with the conceptual values for
soil parameters K and Sf (FC):CN=f(K, Sf) (KovAR
1992; KoVAR et al. 2014). The second component of
the KINFIL model is the direct runoff transformation.
The equation describes an unsteady flow, which is
approximated by a kinematic wave. The kinematic
equation has been converted into the finite differ-
ence form and resolved by the Lax-Wendroff explicit
numerical scheme (LAXx & WENDROFF 1960). For
practical solutions, the basin has been geometrized
by being divided into two components: the cascade
of planes and the convergent segments, so that the
simulation of the runoff process corresponds with
the topographical catchment areas.

For the rain files of rainfall-runoff episodes, the
KINFIL model simulation is important for correct
determining the value for the runoff curve numbers
CN (US SCS 1992) for antecedent moisture condi-
tions (average: AMC II), and also the default values
for other parameters (actual: CN W volumetric: CNVOI),
and consequently the hydraulic conductivity K and
sorptivity S (at the field capacity FC). The CN values,
and therefore the value for the potential retention
of the active upper soil zone, are influenced by the
uses to which the mostly forested land is put. The

forest hydrological conditions affect especially the
interception, infiltration, and retention of water in
depressions with no runoff and a ground cover layer
of forest soil (humus leaf litter, HLL). The class of
forest hydrological conditions (CFHC) is determined
on the basis of the depth of the litter (HLL from 0 to
15 ¢m) and its compactness (C) classification. For
these CFHC values, the average numbers of runoff
CN curves have been derived by hydrologic soil
groups (KovAR & Va§Sova 2012).

The average value representation of the first grain
category I*'is 25-30%. To this class reaches saturated
hydraulic conductivity K| values as high as 10 mm/h.
On the basis of the humus compactness grade CG = 1
(depth to 5 cm), the forested surface of the basin may
be classified into two hydraulic conditions (CFHC = 2)
and for soil group C, subsequent CN;; = 79 and for
soil group B CN;; = 69.

Table 4 provides a clear record of the numbers of
runoff curve values. To calibrate the parameters of
the model, it is necessary to choose characteristic
couples of rainfall-runoff episodes in such a way
that the rains were short and heavy, that the basin
has already been saturated by previous rain, and
that the peak flow was attained as soon as possible.
This means that the episode should preferably be
in category AMC III of the CN curve validity (i.e.
low values for hydraulic conductivity and sorptivity
at FC). Episodes with the characteristics reported in
Table 5 were selected for calibration.

Variable i in Table 5 is the highest rainfall inten-
sity, H_is rain depth, H . is the sum of previous rains
for five days before the start of the episode, and Q,ax
is peak flow. For the selected calibration episodes,
we were aware that the period of 35—45 years that
elapsed between the calibration and the validation

Table 4. Land division in the Sméda catchment, Bily Potok
downstream gauge

Area HSG

Representation Weighted CN
(%)

70 C 0.70 x 79 = 55.3
Forests 88

18 B 0.18 x 69 =12.4
Pastures (clearings) 7 7C 0.07 x79=5.5
Arable land 3 3B 0.03x79 =24
Built-up (urbanized) 2 2 — 0.02x98=1.9

| CNy, = 77.0 (rounded)
Tot 100 100
o CN,, = 89.0

HSG - hydrological soil groups; weighted CN — weighted

average of curve number values
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Table 5. Selected runoff episodes (KINFIL) in the Smédé catchment (calibration)

Episode No. Date (start) of episode Qs (mm/h)* H, (mm) H_ (mm) Qpax (m?/s)
03 1/7 1971 10.1 77.3 50.5 33.75
04 20/6 1977 12.4 37.7 37.0 37.89

m

episode; Q__ — peak flow

i — highest rainfall intensity; H — precipitation depth; H — sum of the previous rains for five days before the start of the

Table 6. Simulation rating of episodes selected for parameter calibration in the Smédd catchment

Measured Q Calculated QC i B i
Episode No. Date (start) of episode = = lefere?ce peak Nash S,Utdlffe
(m3/s) (%) coefficient (-)
03 1/7 1971 33.75 40.22 19.17 0.62
04 20/6 1977 37.89 35.45 3.14 0.99

Q,ax — Peak flow; QC . — computed peak flow

max

period in the KINFIL model has changed the sta-
tus of land use in the Sméda basin to some extent.
The simulation rating for the parameters used for
calibrating the KINFIL model is shown in Table 6.

From the calibration criteria, only episode number
04 is fully acceptable (WMO 1984). When selecting
the validation episodes, we focused on recent epi-
sodes (after 2008) (Table 7), indicating the volume
of effective rainfall (i.e. runoff volumes) for each
rain gauge station. Table 7 also shows the previous
rainfall totals, the APl index, and the saturation
class (II-III) for each episode. Table 8 provides the
episodic volume values for CN and the volume of
the retention zone.

The volume values for the CN_ | curves and the
values for the retention zone volumes were calculated
from the rainfall and runoff volumes according to a
well-known methodology (PONCE & HAWKINS 1996).

The ANN model. The inputs for the ANN model
are short-history values of hourly precipitation and
runoffs; the output of the network, representing the
runoff value one hour ahead, is predicted on the ba-

sis of the history of hourly values of precipitation
and runoff. The experiments demonstrated that a
period of two or three hours was sufficient for good
predictions. A further objective of the experiments
was to minimize the free parameters, i.e. the size of
the network. A two-hour runoff and precipitation
history was therefore used during the experiments.
The number of layers in the network has also been
kept as limited as possible. It is known that, in theory,
one hidden layer should be sufficient to obtain an
arbitrarily relevant approximation of the functional
dependence represented in the data. However, in
our experiments there was a confirmation that the
use of two (and sometimes more than two) hidden
layers results in a smaller network. In all our experi-
ments we have therefore used networks with four
input neurons, one output neuron, and two layers
of eight and five neurons, respectively. This rather
small size has proved to be specific enough for the
quantity of available data; larger networks have a
tendency to over-fit the training data and achieve
poor generalization.

Table 7. Status of catchment saturation 30 days before the start of the episode

) ) Total rainfall 30 days before the episode start (mm) API .
Episode No. Start of episode — - 30 Saturation class
Hejnice  Nové Mésto pod Smrkem weighted average ~ (mm)

Weight 0.830 0.170 1

1 29/10 2008 84.2 94.5 86.0 79.9 II

2 24/6 2009 195.4 226.1 200.6 186.6 111

3 2/6 2010 144.8 150.8 145.8 135.6 111

4 23/7 2010 88.9 97.3 90.3 84.0 II

5 6/8 2010 164.0 175.2 165.9 154.3 111

APIL,, — index of previous saturation
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Table 8. Runoft episode heights and CN,  volume
Rainfall Q A
Episode No. Start of episode CN,, (=)
(mm)
1 29/10 2008 54.6 26.3 37.3 87.2
2 24/6 2009 21.1 15.7 5.4 97.9
3 2/6 2010 44.8 38.6 5.7 97.8
4 23/7 2010 79.1 29.1 76.3 76.9
5 6/8 2010 199.7 136.8 63.5 80.0

Q — runoff; A — retention zone volume; CNVOl — volume value of curve number

RESULTS

Results of the KINFIL model calibration and
validation. The results of parameter calibration for
the KINFIL model are shown in Figure 3. The peak
flows of the tested hydrographs were in accordance
with the criteria assessment that was used (WMO
1984) only in the case of episode 04. The data for
calibrating the KINFIL model parameters is pre-
sented in Table 6, and the results of the hydrograph
simulations used by the model are shown in Figure 4.

According to the criteria of the World Meteoro-
logical Organization (WMO 1984), simulations with
resulting coefficients in the range of 0.75-1.0 are
applicable, using the same coefficient for model
assessment (Table 9). The quality of the results is
described by means of the Nash-Sutcliffe coefficient
(NASH & SUTCLIFFE 1970) in Table 9.

Results of the ANN Model calibration and vali-
dation. During the experiments, we employed the
leave-one out methodology — the model was always
calibrated using four episodes out of five, and the
remaining fifth episode was used for validation.
Figure 5 shows the calibration and validation results.
In this case, a history of two hour worth runoff and

— Measured discharge (m?/s)

Rainfall (mm)
(a) 40

Discharge (m®/s)
IS

0.5 2.0 3.5 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.0
Time (h)

mm Effective rainfall (mm)

Table 9. Validation results of the physically based model
(KINFIL)

Episode Nash-Sutcliffe coefficient
1 29-30/10 2008 0.61 no*
2 24-25/6 2009 0.77 yes
3 23-25/7 2010 0.89 yes
4 6-8/8 2010 0.81 yes

*coefficient lower than WMO limit

precipitation values is used as an input of one train-
ing example with the output of runoff value one
hour ahead. The main problem when calibrating the
network was not the quality of approximation, but
rather the generalization of the model for previously
unseen data. The validation data error was therefore
used during calibration as a stop criterion to prevent
over-fitting. In particular, the relevant increase in
the validation error was used as an indicator to stop
the iterative training algorithm. The models were
calibrated by the error back propagation method
with a momentum term. The quality of the results is
described by means of the Nash-Sutcliffe coefficient
(NAsSH & SuTcLIFFE 1970) in Table 10.
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Figure 3. KINFIL calibration: Sméda 04, 20-21/6 1977 (a) and Sméda 03, 1-2/7 1971 (b)
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Figure 4. KINFIL validation Smeédé: 29-30/10 2008 — episode 1 (a), 24—25/6 2009 — episode 2 (b), 23-25/7 2010 — epi-
sode 3 (c) and 6-8/8 2010 — episode 4 (d)
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Figure 5. ANN Sméda: 29-30/10 2008 — episode 1 (a), 24—25/6 2009 - episode 2 (b), 23—-25/7 2010 - episode 3 (c) and
6—8/8 2010 - episode 4 (d)
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Table 10. Validation results of the artificial neural network
(ANN) model

Episode Nash-Sutcliffe coefficient

1 29-30/10 2008 0.92 yes

2 24-25/6 2009 0.96 yes

3 23-25/7 2010 0.95 yes

4 6-8/8 2010 0.75 yes
DISCUSSION

Concerning the KINFIL model, the essential question
for hydrologists is which simplifications are right. Physi-
cally-based rainfall-runoft models attempt to link catch-
ment behaviour with measurable properties (BEVEN
2001). However, scaling is a problem of magnitude. It
is currently unclear whether this upscaling premise
is correct. Catchment behaviour at larger scales can
hardly be described by the same governing equations
with effective parameters that somehow subsume the
heterogeneity of the catchment (KIRCHNER 2009). Not
only the subsurface conditions for unsaturated flow,
but also the spatial distribution of the rainfall over a
catchment area serve as good examples of heterogene-
ity. However, we tested the KINFIL model with four
parameters only in order to avoid over-parametrization
while keeping an adequate model structure (PERRIN
et al. 2001; ANDREASSIAN 2004).

The Sméda catchment in the Jizerské hory Mts. has
a very non-linear rainfall-runoff process. The shallow
peat soils are poorly permeable, and precipitation
extremes often cause soil erosion and even landslides.
The KINFIL model in the version with parameter
derivation of saturated hydraulic conductivity K and
sorptivity S (at FC), as a simple three-parameter model
(along with Manning roughness #), has proved not
to be entirely reliable for simulating extreme runoff.
The derived parameters from two calibration cases
are applicable (Table 6), but only three out of four
validated episodes are fully acceptable (Table 9).

Unlike a physically-based model, the mechanism
of the artificial neural network ANN model involves
approximating the relationship between rainfall (an
input to the system) and runoff (an output from
the system) represented by the available historical
data. In our case, the calibration process is based on
training the network on data from several episodes,
irrespective of the physical system, the structure,
and the governing equations. The robustness of
the model is based on two important factors. The
first factor is the reliability of data representing the

rainfall-runoff relations, while the second factor
is the leave-one-out approach. It means that each
simulation is calibrated on several episodes, and is
validated on one episode that has not been used for
calibration. All possible combinations of calibration
and validation splits of the episodes were tested.

The most important issue that we had to address
when calibrating the ANN model was over-fitting of the
training data. The obvious non-linearity of the problem,
represented by the data, calls for a more complex net-
work design with a larger number of units. This conflicts
with the rather small sizes of the datasets describing
the episodes by means of one hour-based data. Thus,
the networks of dozens of units in two layers have a
tendency to capture too many details (maybe including
rainfall measurement errors). The network parameters
and the length of the training episode were therefore
verified by means of the validation set results. Since
our goal is not the best-possible performance of the
training set, but relevant performance of the valida-
tion data, the models typically show better validation
results than calibration.

CONCLUSION

The rainfall-runoff processes in the Smédd basin
are admittedly difficult to calibrate, especially in a
model with a small number of parameters. Generally,
the KINFIL model used here is a physically-based
four-parameter 2D model (2 infiltration parameters
and 2 transformations by a kinematic wave). When a
version of the runoff CN curves was tested, the result-
ing values were used for deriving two parameters, K
and S. Thus the four-parameter version was reduced
to a three-parameter version. The selection of more
recent calibration episodes (not from the 1960s and
1970s) would probably also help the simulation. We
also assume that direct measurements of the soil
hydraulic parameters using geo-statistical methods,
instead applying CN methods to derive both infiltration
parameters, would bring more relevant results. How-
ever, a method of that kind would be very laborious.

In the case of ANN models, it has been demonstrated
that neural networks in general have the ability to
capture the non-linear nature of the rainfall-runoff
relationship, and the results are to a degree compa-
rable with those obtained using hydrological models.
The application of neural networks in this area raised
several issues that needed to be dealt with. Due to
the low statistical frequency of extreme episodes, the
ANN model has to be trained on selected data where
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these episodes are present, and most of the data is not
of interest and has to be abandoned. Unfortunately,
the amount of available data from extreme episodes is
relatively small, taking into account the complexity of
the inherent nonlinear relationship of the model. We
therefore have to address the issue of a suitable network
size. It has to be large enough for the problem to be
modelled faithfully, but at the same time it should be
small enough to generalize well. Our solution to this
problem was to use the validation data performance as
a stopping criterion during the calibration phase. This
allowed us to stop the calibration before the algorithm
started to over-fit the data. This problem should be
further investigated in future, and several other meth-
ods for improving generalization should be employed.
Ensembles of ANNs are a promising approach.
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