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Abstract

Kovář P., Hrabalíková M., Neruda M., Neruda R., Šrejber J., Jelínková A., Bačinová H. (2015): Choosing an appropri-
ate hydrological model for rainfall-runoff extremes in small catchments. Soil & Water Res., 10: 137–146.

Real and scenario prognosis in engineering hydrology often involves using simulation techniques of mathemati-
cal modelling the rainfall-runoff processes in small catchments. These catchments are often up to 50 km2 in area, 
their character is torrential, and the type of water flow is super-critical. Many of them are ungauged. The damage 
in the catchments is enormous, and the length of the torrents is about 23% of the total length of small rivers in the 
Czech Republic. The Smědá experimental mountainous catchment (with the Bílý potok downstream gauge) in the 
Jizerské hory Mts. was chosen as a model area for simulating extreme rainfall-runoff processes using two different 
models. For the purposes of evaluating and simulating significant rainfall-runoff episodes, we chose the KINFIL 
physically-based 2D hydrological model, and ANN, an artificial neural network mathematical “learning” model. A 
neural network is a model of the non-linear functional dependence between inputs and outputs with free parameters 
(weights), which are created by iterative gradient learning algorithms utilizing calibration data. The two models are 
entirely different. They are based on different principles, but both require the same time series (rainfall-runoff ) 
data. However, the parameters of the models are fully different, without any physical comparison. The strength of 
KINFIL is that there are physically clear parameters corresponding to adequate hydrological process equations, 
while the strength of ANN lies in the “learning procedure”. Their common property is the rule that the greater 
the number of measured rainfall-runoff events (pairs), the better fitted the simulation results can be expected.

Keywords: flood prediction; infiltration; Jizerské hory Mts.; kinematic wave; neural network

Rapidly developing catastrophic situations caused 
by extreme rainfall-runoff episodes can often be en-
countered in small mountainous catchments, where 
changes in the runoff and sediment regime can be 
enormous. This is the situation for the creeks in the 
Jizerské Hory Mts., where the Smědá catchment was 
chosen as the case study for this paper. Convective 
high-intensity precipitation on a relatively small 
catchment area, its high inclination and the slope 
of the longitudinal profile of the river, channel de-

struction and its surroundings impacted by erosion 
often cause a great damage (Kovář & Křovák 2002). 

An improvement in runoff prediction methods and 
in determining the volumes of flooding waves are 
of economic as well as environmental importance 
(Čamrová & Jílková 2006). N-year flood discharges 
are the basic hydrological sources for proposing 
measures against floods and erosion. Over the past 
few decades, growing importance has been given 
to the use of mathematical models of the rainfall-
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runoff process, based physically on infiltration, and 
to monitoring surface runoff and its movement on 
slopes and on hydrographic networks. This case study 
shows the ways of identifying the design runoff in 
small basins using the KINFIL model (Kovář 1992). 
This model combines the CN curves method and the 
solution of infiltration equations (Morel-Seytoux 
& Verdin 1981). The simulation of surface runoff is 
resolved by the kinematic wave model (Singh 1976, 
1996), taking into account the detailed topography 
of the basin. The topographic terrain values are cal-
cualted by ArcGIS software. The accuracy of these 
mathematical modelling methods and their connection 
to GIS systems is adequate for the accuracy of the 
mathematical description of physical processes and 
to the range and reliability of the data set used herein.

The second model used in this paper is an artifi-
cial neural network consisting of units called neurons 
that transfer and process information in the form of 
excitations. The training of the neural network can be 
imagined as modifications to the network parameters 
in such a way that the output neurons are excited by 
certain combinations of input signals (Rumelhart & 
McClelland 1986). The number of neurons and their 
connections are determined by the topology of the net-
work. According to the function, we distinguish input, 
output, and intermediate neurons. The input neurons 
correspond with receptors, the output neurons are 
connected to effectors, and the intermediate neurons 
constitute the mediators of the information transfer 
between inputs and outputs (Lippmann 1987). These 
ways of excitation transfer are referred to as paths. 
The information is processed on paths by means of 
changes in the states of neurons along the correspond-
ing paths. The states of all neurons and connections 
(synaptic weights) represent the configuration of a 
network. Training the neural network involves setting 
the configuration on the basis of data representing 
pairs of inputs with desired outputs. This approach is 
called supervised learning, and it most often utilizes 
gradient-based nonlinear algorithms, called error back 
propagation (Neruda et al. 2005). 

The goal of our study is to compare the KINFIL 
and ANN approaches, to identify their strengths 
and weaknesses. 

MATERIAL AND METHODS

Description of the Smědá catchment. The river 
Smědá rises in the peat lands of the Jizerské hory 
Mts. It is the border flow between the Czech Re-

public and Poland (Figure 1a). Since 1957, a water 
level recorder has been installed in the Bílý potok 
station and a number of precipitation gauges have 
been set up in Hejnice, Nové Město pod Smrkem, 
Višňová, and Bílý Potok. This catchment with its 
measured rainfall-runoff episodes is often a source of 
flood disasters, which will be analyzed in this study. 
Table 1 shows the major physical-geometric catch-
ment characteristics of the Bílý Potok downstream 
water level recorder. 

The Smědá brook is classified as having class I and 
class II basic water quality – the water is classified 
as unpolluted or slightly polluted. Table 2 shows the 
basic hydrological data in the Smědá catchment, 
e.g. the average yearly precipitation and the N-years 
runoff values.

In the following description, the basic geological, 
soil, geomorphological, and land use characteristics 
of this part of the Jizerské hory Mts. are presented as 
a consequence of the effects of major rainfall-runoff 
episodes. For understanding the destruction in the 
area caused by high surface outflow and erosion 
processes, the following considerations should be 
taken into account:
− The geological basement of the Jizerské hory mas-

sif is composed of biotic coarse granular or por-
phyritic granite, easily eroded and crumbled into 
fine fractions.

− Most of the soils are shallow, light, coarse granular 
loamy-sandy soils of peat mountain Podzol type, 
peaty soils, and rocky rubble on steep slopes.

− The unsuitable structure and texture of the soils 
and the softness of the soil profile with a lack of 
humus means that the soils are easily eroded.

− The Jizerské hory Mts. have one of the highest 
precipitation frequencies and amplitudes of all 
Central Europe. 

− Steep terrain slopes (30–50%) and quite long slope 
lengths (400–1000 m) provide conditions for gully 
erosion of whole areas.

Table 1. Physical-geometric characteristics of the Smědá 
catchment, Bílý Potok downstream gauge

Characteristics Value
Basin area (km2) 26.58
Thalweg length (km) 13.3 
Thalweg slope (–) 0.069
Altitude (m a.s.l.) 497–1123
Basin average width (km) 1.96
Basin slope (Herbst) (%) 22.2



139

Soil & Water Res., 10, 2015 (3): 137–146 Original Paper

doi: 10.17221/16/2015-SWR

The vegetation in the Smědá basin consists mainly 
of spruce (80–90%), beech and maple trees (up to 
15%). Dwarf pines occur in the peatlands, and birches 
and rowans are scattered in coppices. However, there 
is an intensive new planting programme, and the 
herbaceous small reed vegetation that has grown 
up in the clearings after deforestation is gradually 
being replaced. The species composition now being 
planted is different from the old species composi-

tion, and includes species that are more resilient to 
natural disasters, and that help preventing forest 
erosion and infiltration.

GIS mapping of the Smědá catchment. In the 
present study, GIS tools were used to create a digital 
model of the terrain (DMT), hydrological soil groups, 
economic land use, and the distribution into the sub-
catchments. We used ArcGIS 10.2 software tools, 
with the Spatial Analyst extension. The starting-point 

Table 2. Hydrological data of the Smědá basin at Bílý Potok, the outlet station (Czech Hydrometeorological Institute)

Smědá 
basin

Precipitation Runoff N-year runoffs (m3/s)
(mm) Q1 Q2 Q5 Q10 Q20 Q50 Q100

Bílý potok 1426 1116 21 33 54 74 97 132 162

Figure 1. Main characteristics of the Smědá catchment
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materials were vector base datasets derived from the 
Orthophoto map and the Basic Map of the Czech 
Republic 1:10 000 (ZABAGED II), digital map BPEJ, 
and datasets downloaded from the HEIS database. 
The resulting products are the maps shown in Fig-
ure 1: Major characteristics of the Smědá catchment, 
comprising: (a) orthophotos, (b) height ratios and 
schematization of sub-catchments, (c) slope, and 
(d) land use. The synthetic product is a geographi-
cal map containing the hydrological information 
required for the KINFIL model. This data is compiled 
in Table 3 and shown in Figure 2, which provides a 
geometrical schematization of the sub-catchments, 
including land use. Table 3 provides a numbering 
system for the geometrized areas of the catchment 

(see Figure 2) away from the catchment boundary 
to the downstream gauge profile, distinguishing the 
upper segment (S) and the plates of the left (L) and 
right (R) side of the flow direction of the Smědá river.

The KINFIL model. The KINFIL model is based 
on a combination of infiltration theory, put forward 
by Green and Ampt and modified by Morel-Seytoux 
(Morel-Seytoux & Verdin 1981), and direct run-
off transformation, resolved using a kinematic wave 
(Lax & Wendroff 1960; Kibler & Woolhiser 
1970; Beven 1979; Singh 1996).

The task of the infiltration part of the model is 
to determine the parameters of saturated hydraulic 
conductivity Ks and the retention coefficient of the 
suction pressure Sf (for the state of field capacity FC). 

Table 3. Schematization of the Smědá catchment 

Cascade/ 
subcatchment

Area 
(km2)

Length 
of basin 

(km)
Plate Area 

(km2)

Average 
width 
(km)

Length 
(km)

Slope  
(–)

Grassland Forest Other 
area

Built up 
area

(%)

S1 1.64 1.86
S 11 1.12

0.88
1.26 0.178 – 99.30 – 0.70

S 12 0.53 0.60 0.114 – 94.60 – 5.40
R1 1.84 1.35 R 1 1.84 1.36 1.35 0.070 – 99.60 – 0.40

R2 1.44 0.75
R 21 0.96

1.93
0.50 0.097 – 99.60 – 0.40

R 22 0.48 0.25 0.204 – 99.90 – 0.10

R3 1.99 1.80
R 31 1.08

1.10
0.98 0.213 – 100.00 – –

R 32 0.91 0.83 0.394 – 99.90 – 0.10

R4 1.91 1.75
R 41 0.97

1.09
0.89 0.243 – 91.50 – 7.80

R 42 0.95 0.87 0.424 – 100.00 – –

R5 1.79 0.78
R 51 0.10

2.29
0.05 0.119 – 100.00 – –

R 52 0.41 0.18 0.216 – 100.00 – –
R 53 1.27 0.56 0.269 1.10 81.10 1.70 16.10

R6 3.30 1.49
R 61 0.50

2.22
0.23 0.156 – 100.00 – –

R 62 1.33 0.60 0.218 – 100.00 – –
R 63 1.47 0.66 0.380 0.65 93.75 3.06 2.54

R7 3.46 3.50
R 71 0.40

0.99
0.41 0.180 – 100.00 – –

R 72 1.68 1.70 0.317 2.90 95.40 1.70 –
R 73 1.38 1.40 0.147 34.70 42.50 15.00 7.80

L1 1.79 1.18
L 11 0.62

1.51
0.41 0.193 – 100.00 – –

L 12 1.17 0.77 0.147 – 99.70 – 0.30

L2 2.25 1.23
L 21 1.34

1.83
0.73 0.086 – 100.00 – –

L 22 0.91 0.50 0.154 – 99.93 – 0.07

L3 2.33 1.48
L 31 0.36

1.58
0.23 0.157 – 100.00 – –

L 32 1.61 1.02 0.415 – 98.40 – 1.60
L 33 0.36 0.23 0.273 – 94.60 – 5.40

L4 2.75 2.67
L 41 0.23

1.03
0.23 0.171 – 100.00 – –

L 42 1.03 1.00 0.403 – 100.00 – –
L 43 1.49 1.45 0.164 24.70 52.00 2.00 21.30
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The solution makes use of previously derived relation-
ships between these parameters and the values of the 
runoff curve numbers CN (US SCS 1986). The CN in-
dex values correspond with the conceptual values for 
soil parameters Ks and Sf (FC): CN = f (Ks, Sf) (Kovář 
1992; Kovář et al. 2014). The second component of 
the KINFIL model is the direct runoff transformation. 
The equation describes an unsteady flow, which is 
approximated by a kinematic wave. The kinematic 
equation has been converted into the finite differ-
ence form and resolved by the Lax-Wendroff explicit 
numerical scheme (Lax & Wendroff 1960). For 
practical solutions, the basin has been geometrized 
by being divided into two components: the cascade 
of planes and the convergent segments, so that the 
simulation of the runoff process corresponds with 
the topographical catchment areas.

For the rain files of rainfall-runoff episodes, the 
KINFIL model simulation is important for correct 
determining the value for the runoff curve numbers 
CN (US SCS 1992) for antecedent moisture condi-
tions (average: AMC II), and also the default values 
for other parameters (actual: CNA, volumetric: CNvol), 
and consequently the hydraulic conductivity Ks and 
sorptivity S (at the field capacity FC). The CN values, 
and therefore the value for the potential retention 
of the active upper soil zone, are influenced by the 
uses to which the mostly forested land is put. The 

forest hydrological conditions affect especially the 
interception, infiltration, and retention of water in 
depressions with no runoff and a ground cover layer 
of forest soil (humus leaf litter, HLL). The class of 
forest hydrological conditions (CFHC) is determined 
on the basis of the depth of the litter (HLL from 0 to 
15 cm) and its compactness (C) classification. For 
these CFHC values, the average numbers of runoff 
CN curves have been derived by hydrologic soil 
groups (Kovář & Vaššová 2012).

The average value representation of the first grain 
category Ist is 25–30%. To this class reaches saturated 
hydraulic conductivity Ks values as high as 10 mm/h. 
On the basis of the humus compactness grade CG = 1 
(depth to 5 cm), the forested surface of the basin may 
be classified into two hydraulic conditions (CFHC = 2) 
and for soil group C, subsequent CNII = 79 and for 
soil group B CNII = 69.

Table 4 provides a clear record of the numbers of 
runoff curve values. To calibrate the parameters of 
the model, it is necessary to choose characteristic 
couples of rainfall-runoff episodes in such a way 
that the rains were short and heavy, that the basin 
has already been saturated by previous rain, and 
that the peak flow was attained as soon as possible. 
This means that the episode should preferably be 
in category AMC III of the CN curve validity (i.e. 
low values for hydraulic conductivity and sorptivity 
at FC). Episodes with the characteristics reported in 
Table 5 were selected for calibration.

Variable imax in Table 5 is the highest rainfall inten-
sity, Hs is rain depth, Hs5 is the sum of previous rains 
for five days before the start of the episode, and Qmax 
is peak flow. For the selected calibration episodes, 
we were aware that the period of 35–45 years that 
elapsed between the calibration and the validation 

Figure 2. The Smědá catchment (BP) – distribution into 
sub-catchments

Table 4. Land division in the Smědá catchment, Bílý Potok 
downstream gauge

Representation
Area HSG

Weighted CN
(%)

Forests 88
70 C 0.70 × 79 = 55.3
18 B 0.18 × 69 = 12.4

Pastures (clearings) 7 7 C 0.07 × 79 = 5.5
Arable land 3 3 B 0.03 × 79 = 2.4
Built-up (urbanized) 2 2 – 0.02 × 98 = 1.9

Total 100 100
CNII = 77.0 (rounded)

CNIII = 89.0

HSG – hydrological soil groups; weighted CN – weighted 
average of curve number values

Outlet
Smědá river
Tributaries
Subcatchment
Plate
Contour line, 2 m

Legend

0          500       1000 m
Data source: ZABAGED© ČÚZK
Coordinate system: S-JTSK Krovak EastNorth
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period in the KINFIL model has changed the sta-
tus of land use in the Smědá basin to some extent. 
The simulation rating for the parameters used for 
calibrating the KINFIL model is shown in Table 6.

From the calibration criteria, only episode number 
04 is fully acceptable (WMO 1984). When selecting 
the validation episodes, we focused on recent epi-
sodes (after 2008) (Table 7), indicating the volume 
of effective rainfall (i.e. runoff volumes) for each 
rain gauge station. Table 7 also shows the previous 
rainfall totals, the API30 index, and the saturation 
class (II–III) for each episode. Table 8 provides the 
episodic volume values for CN and the volume of 
the retention zone.

The volume values for the CNvol curves and the 
values for the retention zone volumes were calculated 
from the rainfall and runoff volumes according to a 
well-known methodology (Ponce & Hawkins 1996).

The ANN model. The inputs for the ANN model 
are short-history values of hourly precipitation and 
runoffs; the output of the network, representing the 
runoff value one hour ahead, is predicted on the ba-

sis of the history of hourly values of precipitation 
and runoff. The experiments demonstrated that a 
period of two or three hours was sufficient for good 
predictions. A further objective of the experiments 
was to minimize the free parameters, i.e. the size of 
the network. A two-hour runoff and precipitation 
history was therefore used during the experiments. 
The number of layers in the network has also been 
kept as limited as possible. It is known that, in theory, 
one hidden layer should be sufficient to obtain an 
arbitrarily relevant approximation of the functional 
dependence represented in the data. However, in 
our experiments there was a confirmation that the 
use of two (and sometimes more than two) hidden 
layers results in a smaller network. In all our experi-
ments we have therefore used networks with four 
input neurons, one output neuron, and two layers 
of eight and five neurons, respectively. This rather 
small size has proved to be specific enough for the 
quantity of available data; larger networks have a 
tendency to over-fit the training data and achieve 
poor generalization.

Table 5. Selected runoff episodes (KINFIL) in the Smědá catchment (calibration)

Episode No. Date (start) of episode imax (mm/h)1 Hs (mm) Hs5 (mm) Qmax (m3/s)

03 1/7 1971 10.1 77.3 50.5 33.75
04 20/6 1977 12.4 37.7 37.0 37.89

imax – highest rainfall intensity; Hs – precipitation depth; Hs5 – sum of the previous rains for five days before the start of the 
episode; Qmax – peak flow

Table 6. Simulation rating of episodes selected for parameter calibration in the Smědá catchment

Episode No. Date (start) of episode
Measured Qmax Calculated QCmax Difference peak  

(%)
Nash-Sutcliffe 
coefficient (–)(m3/s)

03 1/7 1971 33.75 40.22 19.17 0.62
04 20/6 1977 37.89 35.45 3.14 0.99

Qmax – peak flow; QCmax – computed peak flow

Table 7. Status of catchment saturation 30 days before the start of the episode

Episode No. Start of episode
Total rainfall 30 days before the episode start (mm) API30 

(mm) Saturation class
Hejnice Nové Město pod Smrkem weighted average

Weight 0.830 0.170 1
1 29/10 2008   84.2   94.5   86.0   79.9 II
2 24/6 2009 195.4 226.1 200.6 186.6 III
3 2/6 2010 144.8 150.8 145.8 135.6 III
4 23/7 2010   88.9   97.3   90.3   84.0 II
5 6/8 2010 164.0 175.2 165.9 154.3 III

API30 – index of previous saturation
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RESULTS

Results of the KINFIL model calibration and 
validation. The results of parameter calibration for 
the KINFIL model are shown in Figure 3. The peak 
flows of the tested hydrographs were in accordance 
with the criteria assessment that was used (WMO 
1984) only in the case of episode 04. The data for 
calibrating the KINFIL model parameters is pre-
sented in Table 6, and the results of the hydrograph 
simulations used by the model are shown in Figure 4.

According to the criteria of the World Meteoro-
logical Organization (WMO 1984), simulations with 
resulting coefficients in the range of 0.75–1.0 are 
applicable, using the same coefficient for model 
assessment (Table 9). The quality of the results is 
described by means of the Nash-Sutcliffe coefficient 
(Nash & Sutcliffe 1970) in Table 9.

Results of the ANN Model calibration and vali-
dation. During the experiments, we employed the 
leave-one out methodology – the model was always 
calibrated using four episodes out of five, and the 
remaining fifth episode was used for validation. 
Figure 5 shows the calibration and validation results. 
In this case, a history of two hour worth runoff and 

precipitation values is used as an input of one train-
ing example with the output of runoff value one 
hour ahead. The main problem when calibrating the 
network was not the quality of approximation, but 
rather the generalization of the model for previously 
unseen data. The validation data error was therefore 
used during calibration as a stop criterion to prevent 
over-fitting. In particular, the relevant increase in 
the validation error was used as an indicator to stop 
the iterative training algorithm. The models were 
calibrated by the error back propagation method 
with a momentum term. The quality of the results is 
described by means of the Nash-Sutcliffe coefficient 
(Nash & Sutcliffe 1970) in Table 10.

Table 8. Runoff episode heights and CNvol volume 

Episode No. Start of episode
Rainfall Q A

CNvol (–)
(mm)

1 29/10 2008 54.6 26.3 37.3 87.2
2 24/6 2009 21.1 15.7   5.4 97.9
3 2/6 2010 44.8 38.6   5.7 97.8
4 23/7 2010 79.1 29.1 76.3 76.9
5 6/8 2010 199.7 136.8 63.5 80.0

Q – runoff; A – retention zone volume; CNvol − volume value of curve number

Table 9. Validation results of the physically based model 
(KINFIL)

Episode Nash-Sutcliffe coefficient

1 29–30/10 2008 0.61 no*

2 24–25/6 2009 0.77 yes

3 23–25/7 2010 0.89 yes

4 6–8/8 2010 0.81 yes

*coefficient lower than WMO limit

Figure 3. KINFIL calibration: Smědá 04, 20–21/6 1977 (a) and Smědá 03, 1–2/7 1971 (b)
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Figure 5. ANN Smědá: 29–30/10 2008 − episode 1 (a), 24–25/6 2009 − episode 2 (b), 23–25/7 2010 − episode 3 (c) and 
6–8/8 2010 − episode 4 (d)

Figure 4. KINFIL validation Smědá: 29–30/10 2008 − episode 1 (a), 24–25/6 2009 − episode 2 (b), 23–25/7 2010 − epi-
sode 3 (c) and 6–8/8 2010 − episode 4 (d)
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DISCUSSION

Concerning the KINFIL model, the essential question 
for hydrologists is which simplifications are right. Physi-
cally-based rainfall-runoff models attempt to link catch-
ment behaviour with measurable properties (Beven 
2001). However, scaling is a problem of magnitude. It 
is currently unclear whether this upscaling premise 
is correct. Catchment behaviour at larger scales can 
hardly be described by the same governing equations 
with effective parameters that somehow subsume the 
heterogeneity of the catchment (Kirchner 2009). Not 
only the subsurface conditions for unsaturated flow, 
but also the spatial distribution of the rainfall over a 
catchment area serve as good examples of heterogene-
ity. However, we tested the KINFIL model with four 
parameters only in order to avoid over-parametrization 
while keeping an adequate model structure (Perrin 
et al. 2001; Andréassian 2004).

The Smědá catchment in the Jizerské hory Mts. has 
a very non-linear rainfall-runoff process. The shallow 
peat soils are poorly permeable, and precipitation 
extremes often cause soil erosion and even landslides. 
The KINFIL model in the version with parameter 
derivation of saturated hydraulic conductivity Ks and 
sorptivity S (at FC), as a simple three-parameter model 
(along with Manning roughness n), has proved not 
to be entirely reliable for simulating extreme runoff. 
The derived parameters from two calibration cases 
are applicable (Table 6), but only three out of four 
validated episodes are fully acceptable (Table 9).

Unlike a physically-based model, the mechanism 
of the artificial neural network ANN model involves 
approximating the relationship between rainfall (an 
input to the system) and runoff (an output from 
the system) represented by the available historical 
data. In our case, the calibration process is based on 
training the network on data from several episodes, 
irrespective of the physical system, the structure, 
and the governing equations. The robustness of 
the model is based on two important factors. The 
first factor is the reliability of data representing the 

rainfall-runoff relations, while the second factor 
is the leave-one-out approach. It means that each 
simulation is calibrated on several episodes, and is 
validated on one episode that has not been used for 
calibration. All possible combinations of calibration 
and validation splits of the episodes were tested.

The most important issue that we had to address 
when calibrating the ANN model was over-fitting of the 
training data. The obvious non-linearity of the problem, 
represented by the data, calls for a more complex net-
work design with a larger number of units. This conflicts 
with the rather small sizes of the datasets describing 
the episodes by means of one hour-based data. Thus, 
the networks of dozens of units in two layers have a 
tendency to capture too many details (maybe including 
rainfall measurement errors). The network parameters 
and the length of the training episode were therefore 
verified by means of the validation set results. Since 
our goal is not the best-possible performance of the 
training set, but relevant performance of the valida-
tion data, the models typically show better validation 
results than calibration.

CONCLUSION

The rainfall-runoff processes in the Smědá basin 
are admittedly difficult to calibrate, especially in a 
model with a small number of parameters. Generally, 
the KINFIL model used here is a physically-based 
four-parameter 2D model (2 infiltration parameters 
and 2 transformations by a kinematic wave). When a 
version of the runoff CN curves was tested, the result-
ing values were used for deriving two parameters, Ks 
and S. Thus the four-parameter version was reduced 
to a three-parameter version. The selection of more 
recent calibration episodes (not from the 1960s and 
1970s) would probably also help the simulation. We 
also assume that direct measurements of the soil 
hydraulic parameters using geo-statistical methods, 
instead applying CN methods to derive both infiltration 
parameters, would bring more relevant results. How-
ever, a method of that kind would be very laborious.

In the case of ANN models, it has been demonstrated 
that neural networks in general have the ability to 
capture the non-linear nature of the rainfall–runoff 
relationship, and the results are to a degree compa-
rable with those obtained using hydrological models. 
The application of neural networks in this area raised 
several issues that needed to be dealt with. Due to 
the low statistical frequency of extreme episodes, the 
ANN model has to be trained on selected data where 

Table 10. Validation results of the artificial neural network 
(ANN) model

Episode Nash-Sutcliffe coefficient
1 29–30/10 2008 0.92 yes
2 24–25/6 2009 0.96 yes
3 23–25/7 2010 0.95 yes
4 6–8/8 2010 0.75 yes
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these episodes are present, and most of the data is not 
of interest and has to be abandoned. Unfortunately, 
the amount of available data from extreme episodes is 
relatively small, taking into account the complexity of 
the inherent nonlinear relationship of the model. We 
therefore have to address the issue of a suitable network 
size. It has to be large enough for the problem to be 
modelled faithfully, but at the same time it should be 
small enough to generalize well. Our solution to this 
problem was to use the validation data performance as 
a stopping criterion during the calibration phase. This 
allowed us to stop the calibration before the algorithm 
started to over-fit the data. This problem should be 
further investigated in future, and several other meth-
ods for improving generalization should be employed. 
Ensembles of ANNs are a promising approach. 
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