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Abstract

Jaksik O., Kodesové R., Kapicka A., Klement A., Fér M., Nikodem A. (2016): Using magnetic susceptibility mapping
for assessing soil degradation due to water erosion. Soil & Water Res., 11: 105-113.

This study focused on developing a method for estimating topsoil organic carbon content from measured mass-
specific magnetic susceptibility in Chernozems heavily affected by water erosion. The study was performed on a
100 ha area, whereby 202 soil samples were taken. A set of soil samples was divided into 3 subsets: A (32 samples),
B (67 samples), and C (103 samples). The mass-specific magnetic susceptibility using low (x,,) and high (x,,)
frequency, and organic carbon content were measured at all soil samples. The contents of iron and manganese,
extracted with a dithionite-citrate solution (Fe;, Mn,) and ammonium oxalate (Fe , Mn_ ), were quantified in
A and B samples. Models for predicting organic carbon content from magnetic susceptibilities were designed
as follows: (1) subset A was used as the training set for calibration, and subsets B and C were used as the test
sets for model validation, either separately (subset B only), or together (merged subsets B and C); (2) merged
subsets A and B were used as the training set and subset C was used as the test set. Results showed very close
correlations between organic carbon content and all measured soil properties. Obtained models relating organic
carbon content to mass-specific magnetic susceptibility successfully predicted soil organic carbon contents.
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Soil degradation due to water erosion is one of the
greatest problems of agricultural soils worldwide.
To be able to map the extent of soil degradation and
consequently propose actions for soil improvement,
an effective approach is needed. Soil organic carbon
content and its time fluctuations is one of the key
features characterizing the given site and occurring
processes. It is widely accepted as the main soil
quality indicator (e.g. REEVES 1997) and therefore
can be used for soil degradation assessment. Tradi-
tional laboratory techniques (dry combustion, wet
oxidization) of soil organic carbon determination
are usually labour intensive, time consuming, and
require special instruments, which means they are
not suitable for large sample collections (e.g. large

areas or continual monitoring). Therefore, there is a
need for fast, reliable, and cost-effective techniques.
Many indirect methods have been developed recently.
One alternative to estimate soil organic carbon as
an indicator of soil erosion is VIS-NIR reflectance
spectroscopy (e.g. MINASNY et al. 2013; VASAT et
al. 2015a).

Another possibility to assess soil material redis-
tribution within the studied area is to measure mag-
netic properties of soils. This technique is capable of
distinguishing topsoil, subsoil, and parent material
based on different concentrations of ferrimagnetics,
and thus providing quantitative information about
soil redistribution within the study area. Magnetic
properties of soils have been used in several stud-
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ies for assessing soil erosion and the consequent
redistribution of soil materials. DE JONG et al. (1998)
studied the differences in magnetic susceptibility
between topsoil and subsoil, and between soils of
different slope positions, and showed that magnetic
susceptibility mapping could be used to quantify soil
redistribution in a cultivated field. A similar study
was performed by KARCHEGANTI et al. (2011), who
assessed soil redistribution following deforestation
and intensive cultivation. SADIKI et al. (2009) ap-
plied magnetic susceptibility for soil degradation
identification as well as for tracing the sources of
sediments that are contributing increasingly larger
sediment loads to the drainage network. RoyaLL
(2001) made use of mineral magnetic measurements
to investigate soil erosion and sediment delivery
in a small agricultural catchment in a limestone
terrain. By using magnetic susceptibility, the rate
of soil erosion can be estimated for a given period
of agricultural land use (JorRDANOVA et al. 2011,
2014). There is a wide range of other applications of
magnetic properties for assessing soils, such as for
hydric soil delineation (DE JoNG 2002; GRIMLEY et al.
2004) or soil pollution assessment (e.g. KAPICKA et
al. 2003, 2011; MAGIERA et al. 2006; Lu et al. 2007;
KoDpESOVA et al. 2011; DLOUHA et al. 2013).
Studies by JorDANOVA et al. (2010, 2014) and
JAkSiK et al. (2015) showed that in Chernozem re-
gions, that are strongly influenced by water erosion,
the organic carbon content of topsoil is closely re-
lated to ferrimagnetic particles content, and thus
also to the mass-specific magnetic susceptibility.
In these studies, while low contents of ferrimag-
netic particles were found in the loess substrates,
considerably higher ferrimagnetic particles content
were documented in the mollic horizons. This was
attributed to highly favourable conditions for the in
situ formation of pedogenic ferromagnetic miner-
als in the mollic horizons of the Calcic Chernozem,
where pedogenic acidification in the humic horizon
accelerates weathering processes. JORDANOVA et al.
(2010) suggested that the conditions were favourable
for magnetite (maghemite) production due to the
following reasons: (i) high organic carbon content,
which provides suitable conditions for bacterial
metabolism and impedes crystallization of goethite
and hematite (MAHER 1998; CORNELL & SCHWERT-
MANN 2003); (ii) repeated cycling of oxidation and
reduction conditions (MULLINS 1977; THOMPSON &
OLDFIELD 1986); and (iii) possible presence of Fe-
reducing bacteria (FORTIN & LANGLEY 2005; WEBER
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et al. 2006; BEHRENDS & VAN CAPPELLEN 2007).
However, studies by JorpDANOVA et al. (2010, 2014)
and JAKSIK et al. (2015) did not include the devel-
opment of models that would have been validated
on independent data sets. Therefore, the aim of this
study was to test the hypothesis that mass-specific
magnetic susceptibility can be used for estimating
organic carbon content (i.e. to develop models on
calibration data sets and validate on validation data
sets) and via proving this hypothesis to provide an
effective approach based on magnetic properties
measurements for acquiring information about soil
properties in topsoil.

MATERIAL AND METHODS

Study site. The study was carried out in South
Moravia (Czech Republic). The region is known for
uninterrupted agricultural use since the Holocene.
The original soil unit in the wider area is a Haplic
Chernozem (FAO 2014) developed on loess. The
intensive agricultural exploitation in combination
with terrain morphology has resulted in a highly
diversified soil spatial pattern. Nowadays the original
soil unit is preserved only on the top of relatively
flat parts, and is gradually transformed by water
erosion up to Regosols on the steepest slopes, while
colluvial soils are formed in terrain depressions and
at toe slopes due to sedimentation of previously
eroded material. Soils within this area have been
intensively investigated during the last several years
(ZADOROVA et al. 2011a, b, 2013, 2015; BRODSKY et
al. 2013; VASAT et al. 2014, 2015a, b; JAKSIK et al.
2015). Studies concentrated on soil type mapping
(with particular interest to delineate colluvial soils)
(ZADOROVA et al. 2011b, 2013, 2015), determining
relationships between terrain attributes and soil
properties (ZADOROVA et al. 2011a, b; JAKSIK et al.
2015), and using VNIR reflectance spectroscopy for
estimating soil organic carbon content (BRODSKY et al.
2013; VASAT et al. 2015a, b) or extractable nutrients
in soils (VASAT et al. 2014). On a relatively small set
of soil samples (36) taken within a 6 ha area, JAKSiK
et al. (2015) documented that organic carbon con-
tent is closely related to iron content, and thus also
to mass-specific magnetic susceptibility (measured
using low (x,) and high (x, ) frequency). To test the
hypothesis that mass-specific magnetic susceptibil-
ity can be used for estimating soil organic carbon
content of eroded soils, the set of soil samples and
a similar procedure (i.e. dividing the set into several
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subsets), used by VASAT et al. (2015b) for validating
methods for estimating C__using VNIR-DRS, was used
also in this study. The area of the experimental field
was 100 ha. In total, 202 spots were visited within
this region following a judgment sampling design,
which may be roughly described as a regular grid
with varying spacing. The goal was to cover different
landform elements (crest, slopes, and depressions)
as evenly as possible. For detailed investigation a
6 ha subplot in the north-west part of the area was
sampled with much higher density (Figure 1a — black
triangles). From this dense sample grid, a subset was
further detached to determine some specific, more
demanding soil characteristics (JAKSIK et al. 2015).
As aresult, we distinguished three subsets to be used
for calibration and validation: subset A consisting
of 32 samples (Figure 1b — black dots), subset B
(Figure 1b — white dots) consisting of 67 remaining
samples of the subplot, and 103 samples of subset C
(Figure 1a — grey triangles) from the extended grid
covering the whole study area. Samples were taken
from topsoil (up to the depth of 20 cm).

Measured data. The collected soil samples were
transported to the laboratory, air-dried, ground, and
sieved through a 2 mm mesh. The low- (0.47 kHz)
and high-frequency (4.7 kHz) magnetic susceptibility
measurements were made in 10 ml plastic contain-
ers using the Bartington MS2B system (Bartington
Instruments 2008), and expressed as mass-specific
magnetic susceptibility. Next, the grain fraction <
0.25 mm was extracted to determine soil organic

carbon content (all soil samples) and content of iron
and manganese (subsets A and B). Soil organic carbon
content (C_ ) was measured using wet oxidation by
acid dichromate solution followed by potentiometric
titration of ferrous ammonium sulphate (SKJEMSTAD
& BALpDOCK 2007). C__data were previously used in
a study by VASAT et al. (2015b). The contents of iron
and manganese extracted with a dithionite-citrate
solution (Fe;, Mn,) and ammonium oxalate (Fe,
Mn ) were quantified according to MCKEAGUE and
DAY (1966) and CoURCHESNE and TURMEL (2007),
respectively. Data (i.e. C__and different forms of Fe
and Mn contents) for subset A were presented by
JaKSiK et al. (2015) and all data (subsets A + B) were
applied in the study by VASAT et al. (2015b).
Statistical analysis. First, the basic statistics were
evaluated and the Pearson’s correlation coefficients
and P-values were calculated to evaluate the rela-
tionships between different soil properties within
different subsets and their combinations: A, B, C,
A + B, A + B + C. Next, we used linear regressions
(applied for selected sample sets) to obtain equations
for predicting C__content from measured magnetic
susceptibilities, which was used to predict C__con-
tent for the other sets of soil samples. We consider
two different scenarios: (1) using subset A as the
training set for calibration, and subsets B and C as
the test sets for model validation either separately
(subset B only) or together (merged subsets B and C)
and (2) using merged subsets A and B as the training
set and subset C as the test set. The goodness-of-fit
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of each model was evaluated using the coefficient of
determination (R?) and residual mean square error
(RMSE). Statistical analyses were performed using
STATISTICA software Ver. 12 (Statsoft 2013).

RESULTS AND DISCUSSION

The soil organic carbon content within the studied
area is showed in Figure 2. The figure clearly shows
high C__diversification due to water erosion. The
highest soil organic carbon contents were found in the
relatively flat parts (crests), with only mild evidence
of soil erosion. Conversely, the lowest contents were
measured on steep slopes, where the signs of water
erosion are the most significant. Sedimentation of
previously eroded material (mollic horizon rich in
organic carbon as well as exposed loess) in bottom
parts (toe slopes, depressions) resulted in a moder-
ate organic carbon content.

The descriptive statistics of all measured soil prop-
erties for each subset are shown in Table 1. Each
data subset has similar soil properties distribution
in terms of variation, and therefore can be used for
mutual comparison of represented areas. The Pear-
son’s correlation coefficients indicating relationships
between all evaluated properties for different sets
(A,B,C,A+B,A+B+C)are shown in Tables 2-6.
Results show strong positive correlations between
C,, and all Fe and Mn forms. A very strong positive
correlation was also found between soil organic
carbon (C_ ) and mass-specific magnetic susceptibil-
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findings correspond to similar studies previously
published (JorpDANOVA ef al. 2010, 2014; JAKSIK et
al. 2015). Frequency dependent susceptibility (x,), or
difference in magnetic susceptibility (Ax) suggested
by JoRDANOVA et al. (2011) as a suitable factor for
assessing the presence of ultrafine crystalline iron
minerals in humic horizons (i.e. suitable conditions
for natural crystallization of goethite and hematite),
was not evaluated in this study because of statisti-
cally insignificant results previously published for
this area (JAKSIK et al. 2015).

The models for predicting soil organic matter
content from mass-specific magnetic susceptibil-
ity (x,) measured at low frequency (0.47 MHz) are
shown in Table 7. Table 7 also shows R? and RMSE
values for model calibrations and validations. The
R? and RMSE values calculated for validation sets
showed slight decreases and increases, respectively,
in comparison to values calculated for calibration
sets. However, they still indicate a very close cor-
respondence between measured and predicted C__
values. Both models of soil organic carbon predic-
tion that were based on magnetic susceptibility
outperformed even the model proposed by VASAT
et al. (2015b), who utilized reflectance soil spectros-
copy for the same sample sets. Results proved the
hypothesis, that magnetic susceptibility measured
in the laboratory can be adopted for soil organic
carbon content prediction and used as an alterna-
tive approach for fast and cost-effective mapping
and monitoring of soil modification due to water
erosion within a region of interest. Even more time-
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Table 2. Correlation coefficients between measured soil properties: soil organic carbon (C_ ), mass-specific magnetic

susceptibility using low (x,) and high frequency (), content of iron and manganese (in dithionite-citrate extract Fe,

Mn, and ammonium oxalate extract Fe_and Mn ) for subset A

Variable Co Xie Xt Mn, Fe, Mn, Fe,
Co\ 1 0.9854™" 0.9806"" 0.9413™ 0.5994™ 0.9491°" 0.8634""
Xit 0.9854™" 1 0.9963"" 0.9538"" 0.6551"" 0.9739™ 0.8895"
Xt 0.9806"" 0.9963" 1 0.9423™ 0.6537"" 0.9739™ 0.8871""
Mn, 0.9413’ 0.9538"" 0.9423™ 1 0.6806"" 0.9385™ 0.8628""
Fe, 0.5994™" 0.6551"" 0.6537"" 0.6806"" 1 0.7195™ 0.6630""
Mn 0.9491"™ 0.9739" 0.9739" 0.9385™ 0.7195™ 1 0.9321™"
Fe 0.8634™" 0.8895™" 0.8871"" 0.8628™" 0.6630"" 0.9321"" 1

"'P < 0.001

Table 3. Correlation coefficients between measured soil properties: soil organic carbon (C_ ), mass-specific magnetic

susceptibility using low (x,) and high frequency (), content of iron and manganese (in dithionite-citrate extract Fe,

Mn, and ammonium oxalate extract Fe_ and Mn ) for subset B

Variable Co X Xug Mn, Fe, Mn Fe,
Cox 1 0.9340™" 0.9350™" 0.8316 " 0.7567" 0.8505™" 0.8375™"
Xit 0.9340"" 1 0.9960"" 0.9049" 0.8184™" 0.9150" 0.8890""
X 0.9350"" 0996 1 0.9070"" 0.8249" 0.9175™ 0.8843""
Mn, 0.8316™" 0.9049" 0.9070"" 1 0.8638"" 0.8980"" 0.8387""
Fe, 0.7567"" 0.8184™" 0.8249™" 0.8638"" 1 0.8564™" 0.7921""
Mn, 0.8505"" 0.9150"" 0.9175™ 0.8980™" 0.8564"" 1 0.9336™
Fe, 0.8375™" 0.8890™" 0.8843™" 0.8387"" 0.7921"" 0.9336™" 1
"'P < 0.001

Table 4. Correlation coefficients between measured soil
properties: soil organic carbon (C_ ), mass-specific mag-
netic susceptibility using low (x;) and high frequency ()
for subset C

Table 5. Correlation coefficients between measured soil
properties: soil organic carbon (C_ ), mass-specific mag-
netic susceptibility using low (x;) and high frequency ()
for subset A + B+ C

Variable Cox Xig Xne Cox Xig Xne
C.. 1 0.9165™ 0.9168"" C.. 1 0.9283" 0.9286""
Xit 0.9165™ 1 0.9994™ Xit 0.9283™ 1 0.9985™"
X 0.9168"" 0.9994™" 1 X 0.9286"" 0.9985™ 1
P <0.001 "'P <0.001

and cost-effective non-intrusive approach could be
proposed based on the assumption that magnetic
susceptibility may be measured directly in the field
using the field sensor MS2D (Bartington Instruments
2008). A strong correlation between the volume
magnetic susceptibility measured in the field and
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mass-specific magnetic susceptibility measured in
the laboratory was documented for subplot A + B by
KapriCKaA et al. (2013). We should however point out
that successful application of the laboratory or field
method for predicting soil organic carbon content
requires soils consisting of two contrast horizons,
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Table 6. Correlation coefficients between measured soil properties: soil organic carbon (C_ ), mass-specific magnetic

susceptibility using low (x,) and high frequency (), content of iron and manganese (in dithionite-citrate extract Fe,

Mn, and ammonium oxalate extract Fe_and Mn, ) for subset A + B

Variable Co X Xug Mn, Fe, Mn Fe,
Cox 1 0.9519™ 0.9512"" 0.8698™" 0.6986 " 0.8873™" 0.8426
Xit 0.9519" 1 0.9961"" 0.9213" 0.7642"" 0.9358"" 0.8879""
Xt 0.9512"" 0.9961"" 1 0.9188"" 0.7670"" 0.9378™" 0.8836 "
Mn, 0.8698"" 0.9213" 0.9188"" 1 0.8051"" 0.9117" 0.8452""
Fe, 0.6986™" 0.7642"" 0.767" 0.8051"" 1 0.8048™" 0.7552""
Mn 0.8873"" 0.9358"" 0.9378™" 0.9117" 0.8048™" 1 0.9300™"
Fe, 0.8426™" 0.8879™" 0.8836™" 0.8452"" 0.7552"" 0.9300™" 1
"'P < 0.001

Table 7. Prediction of soil organic carbon (C__

) using mass-specific susceptibility (x,) at low frequency (0.47 kHz);

model A calibrated on subset A (predictions for subsets B and B + C); model AB calibrated on subsets A and B combined

(prediction for subset C)

Regression equation R? RMSE
Model A
Calibration C, =0.3764"" +0.2030 x,/ 0.9710™ 0.0580
External validation B 0.8723™ 0.1150
External validation BC 0.8518"" 0.1872
Model AB
Calibration C,, =0.4093" +0.1894 x, 0.9060™ 0.0969
External validation C 0.8400™" 0.1901

"'P < 0.001

i.e. mollic horizon and substrate of high and low
ferrimagnetic particle contents, respectively.

CONCLUSIONS

The study presents magnetic susceptibility as a
novel parameter for soil degradation assessment. The
results showed that magnetic measurements taken
within similar Chernozem regions could provide
reliable, non-intrusive, and satisfactory information
for determination and monitoring of soil organic
carbon content. The main advantage of magneto-
metric techniques is in their relative simplicity as
compared to standard laboratory techniques for
evaluating ferrimagnetic particles content, and in
this region related soil organic carbon content. In-
direct magnetic measurements are highly effective,

and therefore can be very useful for larger numbers
of samples at study sites.
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