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The aim of this paper was to determine the influence of factors related to rainfall data on the uncertainty flood

simulation. The calculations were based on a synthetic unit hydrograph NRCS-UH. Simulation uncertainty was
determined by means of GLUE method. The calculations showed that in the case of a catchment with limited
meteorological data, it is better to use rainfall data from a single station located within the catchment, than

to take into account the data from higher number of stations, but located outside the catchment area. The pa-

rameters of the NRCS-UH model (curve number and initial abstraction) were found to be less variable when

the input contained rainfall data from a single rainfall station. It was also manifested by a lower uncertainty of

the simulation results for the variant with one rainfall station, as compared to the variant based on the use of

averaged rainfall in the catchment.
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Modelling of hydrological processes requires knowl-
edge on local conditions related to the water cycle
(KoVvAR et al. 2015). To accurately estimate floods
with hydrological models, the model parameters
and the initial state variables must be known. Good
estimations of parameters and initial state variables
are required to enable the models to make accurate
estimations (LU et al. 2013). According to BUTTS et
al. (2004), the key factors determining the simulation
accuracy involve input parameters and the hydrolo-
gist’s knowledge of the model structure. Important
factor, affecting the model outcomes, is the quality of
information constituting the model input, mainly the
precipitation data. BORMANN (2006) indicated that
high quality simulation results require high quality
input data, but not necessarily always highly resolved
data. The studies performed by BARDOSsY and DAs
(2008) showed that the number and spatial distribu-
tion of the rain gauges affect the simulation results.
ANCcTIL et al. (2006) showed that model performance
was rapidly reduced when the mean area rainfall

was computed using a number of rain gauges lower
than a certain number. Spatial distribution and the
accuracy of the rainfall input to a rainfall-runoff
model considerably influence the volume of storm
runoff, peak runoff, and time-to-peak. Errors in
storm-runoff estimation were directly related to
spatial data distribution and the representation of
spatial conditions across a catchment.

The assessment of uncertainty of hydrological
models is of major importance in hydrologic mod-
elling. Generally, there are three principal sources
contributing to modelling uncertainty: errors as-
sociated with input data and data for calibration,
imperfection in a model structure, and uncertainty
in model parameters (CHEN et al. 2013). XU et al.
(2006) showed that the quality of precipitation data
influenced both simulation errors and calibrated
model parameters. The effect of input parameters on
the simulation uncertainty in the hydrologic models
was investigated by Wu et al. (2008) and Diaz-
RAMIREZ et al. (2012).
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A variety of methods has been developed to deal
with parameter uncertainty and modelling uncertain-
ty. Among these methods, the generalized likelihood
uncertainty estimation (GLUE) method, developed by
BEVEN and BINLEY (1992), and the formal Bayesian
method using Metropolis-Hastings (MH) algorithm,
a Markov Chain Monte Carlo (MCMC) methodol-
ogy, are extensively used (BATEs & CAMPBELL 2001;
BLASONE ef al. 2008). Most studies were carried out
in the catchments where detailed hydrological and
meteorological data were available. However, there
are situations when hydrological calculations are
necessary, e.g. for the purpose of flood protection,
but the catchments are poorly metered (limited num-
ber of gauges and rainfall stations). Then, the use of
hydrological models is particularly difficult, as the
calibration process is based on a limited amount of
data. This can increase the uncertainty of simulation
results. During major social and economic changes oc-
curring in the 1980s and 1990s, the number of gauges
and rainfall stations in Poland was seriously limited.
As a result, only large catchments (with an area of
over several thousand km?) have a dense network of
meteorological and hydrological stations. Smaller
catchments often feature just one or two gauges and
rainfall stations, and sometimes this infrastructure
is completely absent. Implementation of flood pro-
tection plans requires also hydrological analyses to
be conducted, often with the use of hydrological
models, in the catchments with under-developed
measurement network. Moreover, designers usu-
ally base their calculations on basic hydrological
models, mostly those of lumped parameters, due to
their simplicity and ease of obtaining and setting the
parameters. Therefore, a question arises whether the
uncertainty of hydrological calculation obtained for
catchments with poor hydro-meteorological data
shall disqualify the applied hydrological models.

Thus, the aim of this paper was to determine the
influence of factors related to rainfall input data
quality on the uncertainty of flood parameters ob-
tained from a simulation. The uncertainty analysis
concerned only a direct runoff during a flood, as it
was the main component of the total runoff in the
investigated catchment, and the applied methodolo-
gies required only this concrete runoff component for
further hydraulic modelling of water transformation
in the river beds.

Characteristics of the Stobnica River and the
catchment area. The study included an upland river
Stobnica — right-bank tributary of the Wislok, situ-
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ated in the south-eastern part of Poland (Figure 1).
The catchment is located in the temperate climate
zone. Its area is 335.84 km?, and the length of the
main watercourse is 47.319 km. Mean catchment
slope is 0.78%. The catchment soils are mainly of
poor and medium permeability. Most of its area is
covered by arable land and forests.

The average annual rainfall in the Stobnica catch-
ment for the years 1971-2000 was about 650 mm,
and the average number of days with thunderstorms
per year was 28-30. There is a river gauge on the
Stobnica River, located in Godowa at 2.773 km. Only
two rainfall stations are currently located within
the catchment or in its vicinity: Orzechowka, in the
central part of the catchment, and Zarnowa (outside
the catchment boundaries, but covering the Stobnica
estuary area).

MATERIAL AND METHODS

Daily precipitation was measured at the rainfall
stations in Zarnowa and Orzechowka, flow hydro-
graphs were obtained for the river gauge in Godowa
as recorded in the years 1997-2010. The data were
obtained from the Institute of Meteorology and
Water Management, National Research Institute
in Warsaw. The Institute’s archives contained only
the data on flow and rainfall for a daily time step.

Figure 1. The Stobnica catchment area divided into sub-
catchments



Soil & Water Res., 11, 2016 (4): 277-284

Original Paper

doi: 10.17221/156/2015-SWR

In total, sixteen greatest rainfall-runoff events per
year were selected for the analysis.

The analyses were carried out as follows: first, the
parameters of the hydrological model were calibrated,
taking into account the rainfall recorded at one rainfall
station Orzechowka, located in the central part of the
catchment. Then, the model parameters were cali-
brated, taking into account averaged catchment rainfall
recorded at two rainfall stations. The averaged catch-
ment rainfall was determined using Thiessen method.

All calculations were performed using HEC-HMS 3.4
software (USACE 2008). The calibration involved curve
number (CN) parameter and initial abstraction (Ia).
The univariate gradient search method of the HMS
optimization manager was applied in the automated
model calibration to optimize the set of initial model
parameters within the limits obtained by manual cali-
bration (CUNDERLIK & SiMoNoVIC 2004). The model
quality was determined by using the following indices:
— efficiency coefficient E (NASH & SUTCLIFFE 1970):

b e .

— percentage error in peak flow rate PEP (%):

Qs,max

0,max

PEP = (1 - ) x 100 (2)

— percentage error in wave volume PEV (%):

PEV - (1 -é) % 100 3)

o

— percentage weight root mean square error PWRMSE
(%):
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PWRMSE = 100 x | —=L o = =sv” ~ 2Qy
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where:
N — number of ordinates of the hydrograph
i — index varying from 1 to N
Qo - i ordinate of the observed hydrograph
Qu - i ordinate of the simulated hydrograph
Q,, - mean of the ordinates of the observed hydrograph
Q; max — simulated peak discharge
Q, max — Observed peak discharge
V., —simulated volume of hydrograph

V,  — observed volume of hydrograph

We adopted the criterion proposed by MoRr1asi et al.
(2007), assuming that for E values above 75% the model-
based reality description was very good, for E in the range
of 65-75% it was good, and for E = 50-64% satisfactory.
Initial values of CN parameter were determined based
on observed rainfall-runoff episodes. Initial value of Ia
parameter was assumed 0.20-S, when S is the maximum
potential retention according to USDA (1986).

Further steps involved uncertainty analysis of the
simulation results based on generalized likelihood
uncertainty estimation (GLUE) method. The procedure
is based on running a large number of Monte Carlo
(MC) model simulations with different parameter sets,
sampled from proposed (prior) distributions, and infer-
ring the outputs and parameter (posterior) distributions
based on the set of simulations showing the closest
fit to the observations (obtained from parameter sets
defined as “behavioural”) (BLASONE 2007). A priori
distribution of the model parameters was determined
based on the observed floods. Monte Carlo simulations
were run for the variant with a single rainfall station
and for the variant with averaged rainfall from two
rainfall stations. Here, the performance of each model
was evaluated by multiple performance or likelihood
measures. In most applications of GLUE, parameter
sampling is carried out using non-informative uniform
sampling without prior knowledge of individual param-
eter distribution other than a feasible range of values
(CHEN et al. 2013). In this study, the Nash-Sutcliffe
efficiency (NAsH & SUTCLIFFE 1970) was chosen for
the likelihood function as in many other studies. The
likelihood function was calculated based on Eq. (1).

In order to provide a quantitative evaluation of the
difference between the results of the different rainfall
data, the following uncertainties were calculated:

Average relative length (ARIL) is proposed by JIN
et al. (2010) as follows:

n Limit - Limit
ARIL = Zi:l “ Y (5)
Qobst,t

Average asymmetry degree (AAD) of the predic-
tion bounds (X10NG et al. 2009) with respect to the
corresponding observed discharge is simulated:

imi ut Qobst,t

Limit
ADD =L} | =
nei=1 leltu‘t

-05
~ Limit,, ‘ ©)

Average deviation amplitude (ADA) is used by
XI10ONG et al. (2009) as follows:

ADA=LY" % (Limit, , + Limit,,) - Q

(7)

obst,t
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where:

Limit, , Limit , — lower and upper boundary values of
95% confidence intervals

Q, s, — Observed flow (for all 7 ordinates of the observed
hydrograph)

n — number of time steps

At the last stage of the calculations, the model was
verified using independent materials, based on the
observed flood that occurred in June 1999.

For the Stobnica catchment, the total runoff hydro-
graph was calculated based on rainfall-runoff model
developed by the Natural Resources Conservation
Service (NRCS) (BEDIENT et al. 2013). An extremely
important parameter, describing a catchment response
to rainfall, is the lag time. As in the case of the Stobnica
catchment, this parameter was determined by means
of a direct method in each sub-catchment, its initial
value was determined using the following formula:

1000 |07
;- (328 x L x1000)°* x ( CN 9)

g~ 1900 ]

(8)

where:

Tlag — lag time (h)

L - catchment length (km)
CN - curve number

J - catchment slope (%)

These rainfall events were the basis for the cal-
culation of the effective rainfall, representing the

doi: 10.17221/156/2015-SWR

direct runoff. The effective rainfall was calculated
by NRCS-CN method where CN initial values were
determined based on land use, soil conditions, and
hydrological conditions in each sub-catchment.

RESULTS AND DISCUSSION

Calibration of the model parameters. Table 1
shows the results of the calibration of NRCS-UH
model parameters, depending on the variant for deter-
mining the rainfall in all the observed rainfall-runoff
episodes. The analyses demonstrated significantly
higher scores achieved by the model calibrated with
the input data coming from a single rainfall station
Orzechowka. This was evidenced by higher values
of E coefficient, and lower values of PEP, PEV, and
PWRMSE in the model using the data from a sin-
gle rainfall station, as compared to the model with
spatially averaged rainfall data used as the input
information. The values of CN and la parameters
were also different, depending on the quality of the
rainfall data used. Regardless of the quality of the
rainfall data, the values of CN and Ia parameters
were characterized by asymmetric distribution, as
evidenced by the kurtosis and skewness values.

According to the classification of MORIASI et al.
(2007), average E coefficient values for a model based
on a single rainfall station allowed for classifying this
model as a good one. In 44% of the simulations, the

Table 1. The results of synthetic unit hydrograph NRCS-UH model calibration for the observed rainfall-runoff episodes

Parameter Average Median SD Min Max Kurtosis Skewness
One rainfall station

CN (-) 93.34 94.10 6.22 79.30 99.00 2.88 -1.54
Ia (mm) 2.87 1.88 2.49 0.89 8.50 2.76 1.61
E (%) 71.26 69.20 18.00 36.20 93.00 0.46 —-0.65
PEP (%) 3.10 4.10 5.59 -3.00 11.90 -1.49 0.28
PEV (%) 13.16 19.70 23.73 -38.90 44.30 2.53 -1.31
PWRMSE 13.09 11.70 7.54 1.80 25.90 -0.37 0.32
Averaged rainfall

CN (-) 90.23 91.10 10.70 68.80 99.00 2.65 -1.54
Ia (mm) 3.13 2.00 2.75 0.91 8.51 1.96 1.45
E (%) 58.98 84.70 39.67 -13.30 89.04 0.45 -1.26
PEP (%) 9.10 11.20 11.49 -10.10 27.00 1.07 -0.22
PEV (%) 13.93 14.60 22.49 -23.40 46.90 0.55 —-0.34
PWRMSE 19.04 15.60 10.50 8.10 33.40 -1.81 0.50

CN - curve number; Ia — initial abstraction; E — efficiency coefficient; PEP — percentage error in peak flow rate; PEV — percent-

age error in wave volume; PWRMSE — percentage weight root mean square error; SD — standard deviation
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distribution. A selection criterion was the threshold
value of likelihood function, defined by the Eq. (1)
and exceeding 65% which, as previously mentioned,
denoted good and very good models. The simula-
tions, in which the values of E were below 65%, were
excluded from further analysis. Figure 4 shows the
simulation results with the uncertainty area for the
rainfall data from a single rainfall station, and Fig-
ure 5 depicts the variant in which the model input
included the averaged rainfall. Table 2 presents the
calculated uncertainty results.

The presented calculations seem to indicate that the
resulting hydrograph correctly described the investi-
gated flood. The simulations, in which the input data
included the rainfall from a single station, showed
that the hydrograph was located in the middle of 95%
confidence interval, within the ascending part, and the
beginning of the regression part. In the remaining part
it was outside the lower limit of the confidence interval.
In the case of the simulation based on the averaged
catchment rainfall, the resulting hydrograph was located

within the lower limit of the confidence interval in the
ascending part and the beginning of the regression part,
and in the remaining phase the hydrograph was beyond
the lower limit of the confidence interval. In order to
provide a quantitative evaluation of the difference among
the results of the simulation, ARIL, AAD and ADA
were calculated (Table 2). An AAD value lower than
0.5 indicated that, on average, the observed discharge
was within the uncertainty bands, whereas the higher
the AAD value, the more asymmetrical the uncertainty
bands were around the observed water levels (X1IONG et
al. 2009). For example, in Eq. (6) replace the /4, we get
|l — 0.5| for each time step. If the prediction bounds
were completely symmetrical around Q, which is the
ideal case, such that Q was equal to the middle point
value of prediction bounds, % = 0. Hence, the closer
the bounds values are to their respective Q values, the
closer will be the corresponding / values to 0.5 and the
respective expression |4 — 0.5] is also close to zero,
indicating almost perfect symmetry of the bounds
about the discharge hydrograph.

70 |
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Table 2. Comparison of uncertainty parameters for the
analyzed simulation conditions

Uncertainty Single rainfall ~ Averaged catchment
parameter station rainfall
Flood of June 1999

ARIL 0.089 0.121

AAD 0.277 0.288

ADA 19.65 19.02

Flood of May 2003

ARIL 0.281 0.280

AAD 1.304 1.316

ADA 16.87 16.63

ARIL — average relative length; AAD — average asymmetry

degree; ADA — average deviation amplitude

When hydrological calculations are required in
the catchments equipped with a limited number of
rainfall stations, the simulations are more accurate
if the data from a lower number of stations are used,
preferably those located within the catchment and/or
close to its borders. In the case of June 1999 flood,
it was demonstrated by slightly higher ARIL and
AAD values in the variant with averaged rainfall, as
compared with the variant accounting for rainfall
time series from only one station. However, it can
be concluded that, regardless of the quality of the
rainfall data, the model uncertainty was at a similar
level, as the resulting hydrograph was within 95%
confidence interval. The model accounting for only
one rainfall station was characterized by a slightly
higher deviation amplitude. On the other hand, a
greater uncertainty of the simulation results was
obtained for the flood of May 2003. Compared to
the flood of 1999, ARIL and AAD values were higher,
and an opposite situation was perceived for ADA.
The analysis of the second flood showed an asym-
metric position of the resulting hydrograph and the
confidence limits, regardless of the quality of input
rainfall data (AAD value above 0.5). A significant
part of the hydrograph for the second flood was
located outside the confidence limits. However, it
was noticed that the uncertainty was slightly lower
in the simulations of the 2003 flood for the vari-
ant based on the rainfall data from a single station.
This was due to the fact that one of the rainfall sta-
tions (Orzechowka) was located within the catch-
ment area, and the other (Zarnowa) was outside the
catchment. Supplying the model with the averaged
rainfall from two stations increased the uncertainty

of simulation results, because the rainfall recorded
at Zarnowa station only slightly affected the flood
wave formation in the Stobnica River. Effects of the
rainfall recorded at this station were limited mainly
to the estuary area, while an essential volume of the
runoff was formed in the upper and central part of
the catchment.

CONCLUSION

The article discussed the effects of the rainfall data
quality on the uncertainty of flood simulation using
the NRCS-UH model. The study was conducted in
the catchment area of the Stobnica River in south-
eastern Poland. It is a catchment where limited hy-
drological and meteorological data are available,
which undoubtedly makes the practical application
of hydrological models difficult. We analyzed the
rainfall data obtained from a single rainfall station
or averaged for two stations and used as the model
input. The calculations showed that in the case of
a catchment with limited meteorological data, it is
better to use rainfall data from a single station located
within the catchment, than take into account the data
from a higher number of stations, but located outside
the catchment area. Based on the model uncertainty
calculations, carried out as per GLUE method, the
parameters of NRCS-UH model (CN and Ia) were
found to be less variable when the input consisted
of the rainfall data from a single rainfall station.
It was also manifested by lower uncertainty of the
simulation results for the variant with one rainfall
station, as compared with the variant using averaged
catchment rainfall.
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