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The aim of this paper was to determine the influence of factors related to rainfall data on the uncertainty flood 
simulation. The calculations were based on a synthetic unit hydrograph NRCS-UH. Simulation uncertainty was 
determined by means of GLUE method. The calculations showed that in the case of a catchment with limited 
meteorological data, it is better to use rainfall data from a single station located within the catchment, than 
to take into account the data from higher number of stations, but located outside the catchment area. The pa-
rameters of the NRCS-UH model (curve number and initial abstraction) were found to be less variable when 
the input contained rainfall data from a single rainfall station. It was also manifested by a lower uncertainty of 
the simulation results for the variant with one rainfall station, as compared to the variant based on the use of 
averaged rainfall in the catchment. 
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Modelling of hydrological processes requires knowl-
edge on local conditions related to the water cycle 
(Kovář et al. 2015). To accurately estimate floods 
with hydrological models, the model parameters 
and the initial state variables must be known. Good 
estimations of parameters and initial state variables 
are required to enable the models to make accurate 
estimations (Lü et al. 2013). According to Butts et 
al. (2004), the key factors determining the simulation 
accuracy involve input parameters and the hydrolo-
gist’s knowledge of the model structure. Important 
factor, affecting the model outcomes, is the quality of 
information constituting the model input, mainly the 
precipitation data. Bormann (2006) indicated that 
high quality simulation results require high quality 
input data, but not necessarily always highly resolved 
data. The studies performed by Bárdossy and Das 
(2008) showed that the number and spatial distribu-
tion of the rain gauges affect the simulation results. 
Anctil et al. (2006) showed that model performance 
was rapidly reduced when the mean area rainfall 

was computed using a number of rain gauges lower 
than a certain number. Spatial distribution and the 
accuracy of the rainfall input to a rainfall-runoff 
model considerably influence the volume of storm 
runoff, peak runoff, and time-to-peak. Errors in 
storm-runoff estimation were directly related to 
spatial data distribution and the representation of 
spatial conditions across a catchment. 

The assessment of uncertainty of hydrological 
models is of major importance in hydrologic mod-
elling. Generally, there are three principal sources 
contributing to modelling uncertainty: errors as-
sociated with input data and data for calibration, 
imperfection in a model structure, and uncertainty 
in model parameters (Chen et al. 2013). Xu et al. 
(2006) showed that the quality of precipitation data 
influenced both simulation errors and calibrated 
model parameters. The effect of input parameters on 
the simulation uncertainty in the hydrologic models 
was investigated by Wu et al. (2008) and Diaz-
Ramirez et al. (2012). 
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A variety of methods has been developed to deal 
with parameter uncertainty and modelling uncertain-
ty. Among these methods, the generalized likelihood 
uncertainty estimation (GLUE) method, developed by 
Beven and Binley (1992), and the formal Bayesian 
method using Metropolis-Hastings (MH) algorithm, 
a Markov Chain Monte Carlo (MCMC) methodol-
ogy, are extensively used (Bates & Campbell 2001; 
Blasone et al. 2008). Most studies were carried out 
in the catchments where detailed hydrological and 
meteorological data were available. However, there 
are situations when hydrological calculations are 
necessary, e.g. for the purpose of flood protection, 
but the catchments are poorly metered (limited num-
ber of gauges and rainfall stations). Then, the use of 
hydrological models is particularly difficult, as the 
calibration process is based on a limited amount of 
data. This can increase the uncertainty of simulation 
results. During major social and economic changes oc-
curring in the 1980s and 1990s, the number of gauges 
and rainfall stations in Poland was seriously limited. 
As a result, only large catchments (with an area of 
over several thousand km2) have a dense network of 
meteorological and hydrological stations. Smaller 
catchments often feature just one or two gauges and 
rainfall stations, and sometimes this infrastructure 
is completely absent. Implementation of flood pro-
tection plans requires also hydrological analyses to 
be conducted, often with the use of hydrological 
models, in the catchments with under-developed 
measurement network. Moreover, designers usu-
ally base their calculations on basic hydrological 
models, mostly those of lumped parameters, due to 
their simplicity and ease of obtaining and setting the 
parameters. Therefore, a question arises whether the 
uncertainty of hydrological calculation obtained for 
catchments with poor hydro-meteorological data 
shall disqualify the applied hydrological models.

Thus, the aim of this paper was to determine the 
influence of factors related to rainfall input data 
quality on the uncertainty of flood parameters ob-
tained from a simulation. The uncertainty analysis 
concerned only a direct runoff during a flood, as it 
was the main component of the total runoff in the 
investigated catchment, and the applied methodolo-
gies required only this concrete runoff component for 
further hydraulic modelling of water transformation 
in the river beds.  

Characteristics of the Stobnica River and the 
catchment area. The study included an upland river 
Stobnica – right-bank tributary of the Wislok, situ-

ated in the south-eastern part of Poland (Figure 1). 
The catchment is located in the temperate climate 
zone. Its area is 335.84 km2, and the length of the 
main watercourse is 47.319 km. Mean catchment 
slope is 0.78%. The catchment soils are mainly of 
poor and medium permeability. Most of its area is 
covered by arable land and forests.

The average annual rainfall in the Stobnica catch-
ment for the years 1971–2000 was about 650 mm, 
and the average number of days with thunderstorms 
per year was 28–30. There is a river gauge on the 
Stobnica River, located in Godowa at 2.773 km. Only 
two rainfall stations are currently located within 
the catchment or in its vicinity: Orzechowka, in the 
central part of the catchment, and Zarnowa (outside 
the catchment boundaries, but covering the Stobnica 
estuary area).

MATERIAL AND METHODS

Daily precipitation was measured at the rainfall 
stations in Zarnowa and Orzechowka, flow hydro-
graphs were obtained for the river gauge in Godowa 
as recorded in the years 1997–2010. The data were 
obtained from the Institute of Meteorology and 
Water Management, National Research Institute 
in Warsaw. The Institute’s archives contained only 
the data on flow and rainfall for a daily time step. 

Figure 1. The Stobnica catchment area divided into sub-
catchments
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In total, sixteen greatest rainfall-runoff events per 
year were selected for the analysis. 

The analyses were carried out as follows: first, the 
parameters of the hydrological model were calibrated, 
taking into account the rainfall recorded at one rainfall 
station Orzechowka, located in the central part of the 
catchment. Then, the model parameters were cali-
brated, taking into account averaged catchment rainfall 
recorded at two rainfall stations. The averaged catch-
ment rainfall was determined using Thiessen method.

All calculations were performed using HEC-HMS 3.4 
software (USACE 2008). The calibration involved curve 
number (CN) parameter and initial abstraction (Ia). 
The univariate gradient search method of the HMS 
optimization manager was applied in the automated 
model calibration to optimize the set of initial model 
parameters within the limits obtained by manual cali-
bration (Cunderlik & Simonovic 2004). The model 
quality was determined by using the following indices:
– efficiency coefficient E (Nash & Sutcliffe 1970):

 	  (1)

– percentage error in peak flow rate PEP (%):

 	  (2)

– percentage error in wave volume PEV (%):

 	  (3)

– percentage weight root mean square error PWRMSE 
(%):

 	  
(4)

where: 
N	 – number of ordinates of the hydrograph
i	 – index varying from 1 to N
Qo(t)	 – ith ordinate of the observed hydrograph
Qs(t)	 – ith ordinate of the simulated hydrograph
Qm	 – mean of the ordinates of the observed hydrograph
Qs,max	– simulated peak discharge
Qo,max	– observed peak discharge
Vs	 – simulated volume of hydrograph
Vo	 – observed volume of hydrograph

We adopted the criterion proposed by Moriasi et al. 
(2007), assuming that for E values above 75% the model-
based reality description was very good, for E in the range 
of 65–75% it was good, and for E = 50–64% satisfactory. 
Initial values of CN parameter were determined based 
on observed rainfall-runoff episodes. Initial value of Ia 
parameter was assumed 0.20∙S, when S is the maximum 
potential retention according to USDA (1986). 

Further steps involved uncertainty analysis of the 
simulation results based on generalized likelihood 
uncertainty estimation (GLUE) method. The procedure 
is based on running a large number of Monte Carlo 
(MC) model simulations with different parameter sets, 
sampled from proposed (prior) distributions, and infer-
ring the outputs and parameter (posterior) distributions 
based on the set of simulations showing the closest 
fit to the observations (obtained from parameter sets 
defined as “behavioural”) (Blasone 2007). A priori 
distribution of the model parameters was determined 
based on the observed floods. Monte Carlo simulations 
were run for the variant with a single rainfall station 
and for the variant with averaged rainfall from two 
rainfall stations. Here, the performance of each model 
was evaluated by multiple performance or likelihood 
measures. In most applications of GLUE, parameter 
sampling is carried out using non-informative uniform 
sampling without prior knowledge of individual param-
eter distribution other than a feasible range of values 
(Chen et al. 2013). In this study, the Nash-Sutcliffe 
efficiency (Nash & Sutcliffe 1970) was chosen for 
the likelihood function as in many other studies. The 
likelihood function was calculated based on Eq. (1).

In order to provide a quantitative evaluation of the 
difference between the results of the different rainfall 
data, the following uncertainties were calculated:

Average relative length (ARIL) is proposed by Jin 
et al. (2010) as follows:

 	  (5)

Average asymmetry degree (AAD) of the predic-
tion bounds (Xiong et al. 2009) with respect to the 
corresponding observed discharge is simulated:

 	  (6)

Average deviation amplitude (ADA) is used by 
Xiong et al. (2009) as follows:

 	  (7)

E = [1 − 
∑     (Qo(t) − Qs(t))

2 ]
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where:
Limitl,t, Limitu,t	– lower and upper boundary values of 

95% confidence intervals
Qobs,t	– observed flow (for all n ordinates of the observed 

hydrograph)
n	 – number of time steps 

At the last stage of the calculations, the model was 
verified using independent materials, based on the 
observed flood that occurred in June 1999. 

For the Stobnica catchment, the total runoff hydro-
graph was calculated based on rainfall-runoff model 
developed by the Natural Resources Conservation 
Service (NRCS) (Bedient et al. 2013). An extremely 
important parameter, describing a catchment response 
to rainfall, is the lag time. As in the case of the Stobnica 
catchment, this parameter was determined by means 
of a direct method in each sub-catchment, its initial 
value was determined using the following formula:

 	  (8)

where:
Tlag	 – lag time (h)
L	 – catchment length (km)
CN	 – curve number
J	 – catchment slope (%)

These rainfall events were the basis for the cal-
culation of the effective rainfall, representing the 

direct runoff. The effective rainfall was calculated 
by NRCS-CN method where CN initial values were 
determined based on land use, soil conditions, and 
hydrological conditions in each sub-catchment.

RESULTS AND DISCUSSION

Calibration of the model parameters. Table 1 
shows the results of the calibration of NRCS-UH 
model parameters, depending on the variant for deter-
mining the rainfall in all the observed rainfall-runoff 
episodes. The analyses demonstrated significantly 
higher scores achieved by the model calibrated with 
the input data coming from a single rainfall station 
Orzechowka. This was evidenced by higher values 
of E coefficient, and lower values of PEP, PEV, and 
PWRMSE in the model using the data from a sin-
gle rainfall station, as compared to the model with 
spatially averaged rainfall data used as the input 
information. The values of CN and Ia parameters 
were also different, depending on the quality of the 
rainfall data used. Regardless of the quality of the 
rainfall data, the values of CN and Ia parameters 
were characterized by asymmetric distribution, as 
evidenced by the kurtosis and skewness values.

According to the classification of Moriasi et al. 
(2007), average E coefficient values for a model based 
on a single rainfall station allowed for classifying this 
model as a good one. In 44% of the simulations, the 

Tlag = 
 (3.28 × L × 1000)0.8 × ( 1000 − 9)0.7

                                1900 √J
CN

Table 1. The results of synthetic unit hydrograph NRCS-UH model calibration for the observed rainfall-runoff episodes

Parameter Average Median SD Min Max Kurtosis Skewness

One rainfall station

CN (–) 93.34 94.10   6.22 79.30 99.00 2.88 –1.54

Ia (mm)   2.87   1.88   2.49   0.89   8.50 2.76 1.61

E (%) 71.26 69.20 18.00 36.20 93.00 0.46 –0.65

PEP (%)   3.10   4.10   5.59 –3.00 11.90 –1.49 0.28

PEV (%) 13.16 19.70 23.73 –38.90 44.30 2.53 –1.31

PWRMSE 13.09 11.70   7.54   1.80 25.90 –0.37 0.32

Averaged rainfall

CN (–) 90.23 91.10 10.70 68.80 99.00 2.65 –1.54

Ia (mm)   3.13   2.00   2.75   0.91   8.51 1.96 1.45

E (%) 58.98 84.70 39.67 –13.30 89.04 0.45 –1.26

PEP (%)   9.10 11.20 11.49 –10.10 27.00 1.07 –0.22

PEV (%) 13.93 14.60 22.49 –23.40 46.90 0.55 –0.34
PWRMSE 19.04 15.60 10.50   8.10 33.40 –1.81 0.50

CN – curve number; Ia – initial abstraction; E – efficiency coefficient; PEP – percentage error in peak flow rate; PEV – percent-
age error in wave volume; PWRMSE – percentage weight root mean square error; SD – standard deviation
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quality of the model based on a single rainfall station 
was found to be very good, in 22% of the simulations it 
was good, in 22% satisfactory, and in 16% inadequate. 
When catchment-averaged rainfall was used as the 
input data, the quality of the simulation markedly 
deteriorated, and an average value of E coefficient 
indicated the outcomes calculated with NRCS-UH 
model as satisfactory. In 57% of the simulations, the 
quality of the model based on averaged rainfall was 
assessed as very good, in 15% of cases it was found 
to be satisfactory, and in 28% inadequate.

Uncertainty analysis. The data set obtained as a 
result of Monte Carlo simulation was used to assess the 
model uncertainty. Figures 2 and 3 present histograms 
with an empirical distribution of the NRCS-UH model 
parameters depending on the quality of the rainfall data.

Asymmetric distribution was achieved for each of 
the analyzed parameters. In the case of the simula-
tion with a single rainfall station, the distributions 
were unimodal. The highest count of values was 
noticed within the range of 90–98 for the CN pa-
rameter, and from 1.0 to 4.0 mm for Ia parameter. 
The histogram of the CN parameter for the model 
including averaged rainfall was unimodal, and the 
largest number of observations was found for the 
CN range 80–99. In the case of Ia parameter, the 
distribution was bimodal, and the largest number 
of this parameter occurrences was recorded within 
the range of 0.1–5.0 mm.  

The next stage of the analysis involved a selection 
of the model parameters yielding the best simula-
tion quality and describing them using a posterior 

Figure 2. Histograms of curve number (CN) and initial abstraction (Ia) parameters for the simulations based on the 
rainfall data from a single station

Figure 3. Histograms of curve number (CN) and initial abstraction (Ia)  parameters for the simulations based on the 
averaged rainfall data
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distribution. A selection criterion was the threshold 
value of likelihood function, defined by the Eq. (1) 
and exceeding 65% which, as previously mentioned, 
denoted good and very good models. The simula-
tions, in which the values of E were below 65%, were 
excluded from further analysis. Figure 4 shows the 
simulation results with the uncertainty area for the 
rainfall data from a single rainfall station, and Fig-
ure 5 depicts the variant in which the model input 
included the averaged rainfall. Table 2 presents the 
calculated uncertainty results.  

The presented calculations seem to indicate that the 
resulting hydrograph correctly described the investi-
gated flood. The simulations, in which the input data 
included the rainfall from a single station, showed 
that the hydrograph was located in the middle of 95% 
confidence interval, within the ascending part, and the 
beginning of the regression part. In the remaining part 
it was outside the lower limit of the confidence interval. 
In the case of the simulation based on the averaged 
catchment rainfall, the resulting hydrograph was located 

within the lower limit of the confidence interval in the 
ascending part and the beginning of the regression part, 
and in the remaining phase the hydrograph was beyond 
the lower limit of the confidence interval. In order to 
provide a quantitative evaluation of the difference among 
the results of the simulation, ARIL, AAD and ADA 
were calculated (Table 2). An AAD value lower than 
0.5 indicated that, on average, the observed discharge 
was within the uncertainty bands, whereas the higher 
the AAD value, the more asymmetrical the uncertainty 
bands were around the observed water levels (Xiong et 
al. 2009). For example, in Eq. (6)  replace the h, we get 
|h – 0.5| for each time step. If the prediction bounds 
were completely symmetrical around Q, which is the 
ideal case, such that Q was equal to the middle point 
value of prediction bounds, h = 0. Hence, the closer 
the bounds values are to their respective Q values, the 
closer will be the corresponding h values to 0.5 and the 
respective expression |h – 0.5| is also close to zero, 
indicating almost perfect symmetry of the bounds 
about the discharge hydrograph. 

Figure 5. Comparison of 95% confidence 
interval of the runoff for the input data 
including the averaged rainfall
Q − discharge
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interval of the runoff for the input including 
data from a single rainfall station
Q − discharge
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When hydrological calculations are required in 
the catchments equipped with a limited number of 
rainfall stations, the simulations are more accurate 
if the data from a lower number of stations are used, 
preferably those located within the catchment and/or 
close to its borders. In the case of June 1999 flood, 
it was demonstrated by slightly higher ARIL and 
AAD values in the variant with averaged rainfall, as 
compared with the variant accounting for rainfall 
time series from only one station. However, it can 
be concluded that, regardless of the quality of the 
rainfall data, the model uncertainty was at a similar 
level, as the resulting hydrograph was within 95% 
confidence interval. The model accounting for only 
one rainfall station was characterized by a slightly 
higher deviation amplitude. On the other hand, a 
greater uncertainty of the simulation results was 
obtained for the flood of May 2003. Compared to 
the flood of 1999, ARIL and AAD values were higher, 
and an opposite situation was perceived for ADA. 
The analysis of the second flood showed an asym-
metric position of the resulting hydrograph and the 
confidence limits, regardless of the quality of input 
rainfall data (AAD value above 0.5). A significant 
part of the hydrograph for the second flood was 
located outside the confidence limits. However, it 
was noticed that the uncertainty was slightly lower 
in the simulations of the 2003 flood for the vari-
ant based on the rainfall data from a single station. 
This was due to the fact that one of the rainfall sta-
tions (Orzechowka) was located within the catch-
ment area, and the other (Zarnowa) was outside the 
catchment. Supplying the model with the averaged 
rainfall from two stations increased the uncertainty 

of simulation results, because the rainfall recorded 
at Zarnowa station only slightly affected the flood 
wave formation in the Stobnica River. Effects of the 
rainfall recorded at this station were limited mainly 
to the estuary area, while an essential volume of the 
runoff was formed in the upper and central part of 
the catchment.

CONCLUSION

The article discussed the effects of the rainfall data 
quality on the uncertainty of flood simulation using 
the NRCS-UH model. The study was conducted in 
the catchment area of the Stobnica River in south-
eastern Poland. It is a catchment where limited hy-
drological and meteorological data are available, 
which undoubtedly makes the practical application 
of hydrological models difficult. We analyzed the 
rainfall data obtained from a single rainfall station 
or averaged for two stations and used as the model 
input. The calculations showed that in the case of 
a catchment with limited meteorological data, it is 
better to use rainfall data from a single station located 
within the catchment, than take into account the data 
from a higher number of stations, but located outside 
the catchment area. Based on the model uncertainty 
calculations, carried out as per GLUE method, the 
parameters of NRCS-UH model (CN and Ia) were 
found to be less variable when the input consisted 
of the rainfall data from a single rainfall station. 
It was also manifested by lower uncertainty of the 
simulation results for the variant with one rainfall 
station, as compared with the variant using averaged 
catchment rainfall. 
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