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Abstract

Salković E., Djurović I., Knežević M., Popović-Bugarin V., Topalović A. (2018): Digitization and mapping of national 
legacy soil data of Montenegro. Soil & Water Res., 13: 83−89.

This paper describes the process of digitizing Montenegro’s legacy soil data, and an initial attempt to use it for digital 
soil mapping (DSM) purposes. The handwritten legacy numerical records of physical and chemical properties for more 
than 10 000 soil profiles and semi-profiles covering whole Montenegro have been digitized, and, out of those, more 
than 3000 have been georeferenced. Problems and challenges of digitization addressed in the paper are: processing of 
non-uniform handwritten numerical records, parsing a complex textual representation of those records, georeferenc-
ing the records using digitized (scanned) legacy soil maps, creating a single computer database containing all digitized 
records, transforming, cleaning and validating the data. For an initial assessment of the suitability of these data for 
mapping purposes, inverse distance weighting (IDW), ordinary kriging (OK), multiple linear regression (LR), and 
regression-kriging (RK) interpolation models were applied to create thematic maps of soil phosphorus. The area chosen 
for mapping is a 400 km2 area near the city of Cetinje, containing 125 data points. LR and RK models were developed 
using publicly available digital elevation model (DEM) data and satellite global land survey (GLS) data as predictor 
variables. The digitized phosphorus quantities were normalized and scaled. The predictor variables were scaled, and 
principal component analysis was performed. For the best performing RK model an R2 value of 0.23 was obtained.
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From 1959 to 1984 extensive field and laboratory 
work was performed in Montenegro in order to 
create a soil map at a 1 : 50 000 scale covering the 
whole country. Numerical data on chemical and 
physical properties of soil were collected within a 
larger project that involved a similar collection of 
soil properties for former Yugoslavia, as back then 
Montenegro was one of its member states.

In recent times, due to technological development, 
there has been significant interest in digitizing these 
numerical records of soil properties in all countries 
that were members of Yugoslavia, in order to obtain 
modern digital soil databases which could, in turn, 
be used by governments and researchers (Vrščaj et 
al. 2005; Hengl & Husnjak 2006). Arrouays et al. 

(2017) presented a survey of broader international 
efforts in digitizing legacy soil data.

Although a substantial work about the soils of 
Montenegro based on these records was published 
(Fuštić & Đuretić 2000), only non-georeferenced 
numerical data on 1800 profiles were digitized and 
presented in it. The authors provided us with their 
digital version of the data and we managed to georef-
erence the data for almost all profiles. However, we 
also digitized and georeferenced more than 1200 ad-
ditional profiles with numerical data that were not 
presented in the book. In another research project, 
the legacy maps for Montenegro were scanned and 
merged into a single raster map, and the ordinal 
numbers of the profiles that were marked on the 
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maps were extracted as a digital georeferenced point 
data set. The same project produced a polygon map 
of soil classes, based on the raster map, but did not 
digitize the numerical records.

We have digitized numerical soil data of more than 
10 000 soil profiles and semi-profiles for Montene-
gro. Where possible, we have also georeferenced the 
data. Besides the numerical data, numerous metadata 
were inserted that enhance the database. The final 
produced database is filtered and validated. As such, 
it represents the basis for digital mapping research 
of Montenegro’s soils.

Several digital soil mapping (DSM) algorithms (Mc-
Bratney et al. 2003) were applied to a subset of 
digitized data. These algorithms were used to create 
thematic maps of soil phosphorus for a designated area 
in Montenegro. The main purpose of the created maps 
is to provide an initial assessment of the suitability of 
digitized data for creating interpolated thematic soil 
maps. Phosphorus is an important nutrient for plants 
(Schachtman et al. 1998). The factors which define 
the contents of particular phosphorus fractions, the 
mobility of phosphorus, and its availability to the biota 
are the main interest of agrochemical and eco-chemical 
research (Topalović et al. 2006). Digital mapping of 
soil phosphorus is an active field of research (Wang 
et al. 2009; Xiao et al. 2012; Liu et al. 2013; Rubæk 
et al. 2013; Yang et al. 2013; Roger et al. 2014; Sar-
madian et al. 2014; Keshavarzi et al. 2015).

MATERIAL AND METHODS

Data entry. At the beginning of our research we 
received Excel files containing data for 1000 pages of 
the original notebooks. There were three notebooks 
containing physical properties and three containing 
chemical properties. The data were entered by about 
100 persons.

For the purposes of easier handling and inspection, 
we scanned the pages of the notebooks into separate 
image files. We also created a computer program 
that allowed the researchers to quickly view both 
the scanned image and the corresponding Excel file, 
for a particular notebook and page.

Originally, the data had not been written in both 
types of notebooks at the same time, nor following 
the same procedure, which made it challenging to 
match the corresponding entries for identical profiles 
in both types of notebooks with a computer program.

Processing of entered data. For data processing and 
validation, and for populating the database, we used 

the Python programming language. About 4000 lines of 
code were written in over 50 scripts (available at https://
bitbucket.org/edin1/montenegro_soil_data_parser).

Final database creation. Overall, the processing steps 
for creating the final database were as follows: parse 
all Excel files and create separate databases (SQLite 
files) for every notebook; add coordinates to those da-
tabases; combine corresponding databases of chemical 
and physical properties for every pair of books, where 
possible, into a single, combined database; and merge 
all combined databases into a single, final database.

Numerous data consistency checks were put at ap-
propriate places in the above procedure, e.g. checks 
that the depths of the horizons for particular pro-
files were not overlapping, the horizons were in the 
appropriate order, the numbers of profiles were in 
increasing order, spelling checks, etc.

A detailed workflow of our digitization procedure 
can be found here: https://bitbucket.org/edin1/mon-
tenegro_soil_data_parser/src/master/parse_all.bat

Data georeferencing. The previously produced point 
data set contained the coordinates of individual soil 
profiles marked on the raster map. The legacy raster 
map was created by merging 38 scanned map sections 
that cover the whole territory of Montenegro. Figure 1 
shows the whole merged map; an example section on the 
map, named “Cetinje 1” (42.25°–42.5°N, 18.83°–19.08°E); 
and a marked profile (25 m) located in that section.

As the original maps were created manually, and the 
scanning process was not perfect, the raster map and, 
consequently, the point data set had small but visible 
deviations from Google’s satellite map. The coordinate 
reference system (CRS) encoded in the raster maps 
and hence the point data set were a slightly modified 
version of EPSG:31276 MGI/Balkans zone 6. 

Mapped area. A 400 km2 area near the city of 
Cetinje was chosen for mapping (42.29°–42.48°N, 
18.83°–19.07°E). The chosen area is contained in 
the “Cetinje 1” section of the legacy map. Due to the 
visible deviations from Google’s satellite map, we 
manually adjusted the CRS embedded in the raster 
map. This was done by a researcher modifying the 
proj4 parameters in QGIS in small increments. He 
would then visually inspect the overlap of various 
topographic objects (mainly bodies of water) between 
the raster map and Google’s satellite map for “Cet-
inje 1” section. Final proj4 parameters were recorded 
for the overlap that was deemed best. These param-
eters were subsequently used for DSM algorithms.

Summers in Cetinje are dry and warm, with an av-
erage temperature of 20°C, while its winters are mild 



85

Soil & Water Res., 13, 2018 (2): 83–89	 Original Paper

https://doi.org/10.17221/81/2017-SWR

and wet, with an average temperature of 2.1°C. With 
around 4000 mm of average yearly rainfall, Cetinje 
is one of the rainiest cities in Europe. However, due 
to the karst landscape, there are not many bodies of 
water in the city and its surroundings. The mapped 
area represents a part of the limestone plateau. There 
are several levels there: the first level is a perimeter 
of the Zeta plain at 150–200 m, the second is the area 
above Rijeka Crnojevića at 350–500 m, and the third 
are the surroundings of Cetinje and Katun Karst at 
650–800 m. In terms of land cover, this is one of the 
poorest areas of Montenegro, due to the very slow 
formation of soil in the limestone, which is poor 
in clay, and the ever-present erosion. Rough relief 
forms with a very shallow soil profile are dominant 
in this karst area. In terms of vegetation, these soils 
are mostly covered with forest (rare assembly) and 
grass (pasture). Calcomelanosol is a dominant soil 
type, not only for the investigated area, but also for 
Montenegro. It occupies about 47% of the territory 
of Montenegro (Fuštić & Đuretić 2000). Prior to 
and at the time of the survey, the area around Cetinje 
had low agricultural development. Such an area with 
one dominant soil type, a small number of bodies of 
water, and low human activity was chosen as these 
factors are beneficial to most mapping algorithms.

There were 125 data points in this area. The mean 
nearest neighbour distance between them was 1127 m. 
The complete spatial randomness (CSR) test showed 
that the original sampling plan was mostly geographi-
cally representative of the chosen area.

Data samples. Only the topsoil horizons were 
considered. For all data points, only the phospho-
rus concentration values were extracted from the 

database and used in the map creation process. The 
concentration of soil available phosphorus (SAP) was 
expressed as the number of mg of P2O5 in 100 g of 
soil. SAP was determined by the ammonium lactate-
acetate method (Egnér et al. 1960), used in several 
European countries. The soil samples were air-dried 
and passed through a 2-mm sieve before analysis. 
SAP was then extracted with a mixture of 0.1 mol 
ammonium lactate and 0.4 mol acetic acid, buffered 
at acidic pH (3.75). The phosphorus concentration in 
the extracts was determined spectrophotometrically.

Figure 2 shows a bubble plot of the recorded values 
of phosphorus concentration. Because the concentra-
tions were skewed, they were log-transformed and 
scaled prior to applying the algorithms (Hengl 2009).

Figure 1. Legacy soil map of Monte-
negro, “Cetinje 1” map section, and 
profile 25 m in that section

Figure 2. Concentrations of phosphorus in the designated 
area for the original sample points
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Predictor variables. The variables used for predic-
tion were terrain attributes generated from satellite-
based digital elevation model (DEM) data, with a 
spatial resolution of 3'' (90 m) (Ferranti 2014). The 
SAGA GIS software (Conrad et al. 2015) was used to 
generate the slope, aspect, and plan curvature terrain 
attributes from elevation, which were then, together 
with elevation, used as predictor variables. Sarmadian 
et al. (2014) and Keshavarzi et al. (2015) reported 
that these terrain attributes can be successfully used 
as predictors for phosphorus. Satellite data from 
the global land survey (GLS) data sets were used as 
additional predictor variables, namely multispectral 
scanner (MSS) bands 1, 2, 3, and 4 for the year 1975 
(USGS 2008a), and thematic mapper (TM) bands 1, 2, 
…, 7 for the year 1990 (USGS 2008b). These particular 
GLS data sets were chosen because they are among 
the oldest publicly available satellite data sets for the 
territory of Montenegro, i.e. they are the closest to 
the time period of the original soil data collection. 

All predictor variables were scaled. Principal com-
ponent analysis was performed using the R package 
GSIF (Hengl et al. 2014), and only the principal 
components that explained 80% of variance were 
used for prediction (King & Jackson 1999).

Mapping algorithms and procedure. Map crea-
tion algorithms were applied using the R program-
ming language (R Core Team 2015) and its libraries. 
The algorithms that were used are: inverse distance 
weighting (IDW) (Shepard 1968), ordinary krig-
ing  (OK) (Hengl 2009), multiple linear regres-
sion (LR) (McBratney et al. 2003; Hengl 2009), 
and regression-kriging (RK) (Cressie 2015). The 
variograms used for OK and RK were, in general, 
obtained automatically from the data using the R li-
brary automap (Hiemstra et al. 2008).

Training and validation. For the purposes of model 
training and validation, several setups of filtering and 
data set splitting were tested. The training data set 
was used only for calculating the variogram model. 
Because of the small number of points, it was difficult 
to find a good setup, as even the choice of the random 
“seed” value used for splitting the set into training and 
validation subsets strongly influenced the final results. 
Only the maps for the setup which gave the best results 
(across all models) are shown. This setup involved 
removal of outliers (values out of the 2 standard de-
viations range around the median value) for a total of 
115 points remaining; using 100% of the data points 
for both training and validation; using a “hand-tuned” 
variogram for OK, as the automap generated one gave 

very poor results; and using leave-one-out (LOO) vali-
dation. In other setups that were tested, outliers were 
included, and the automap was used even for OK. The 
prediction reliability indicators that were recorded are 
the root mean square error (RMSE) and the coefficient 
of multiple correlation of determination R2.

RESULTS

With respect to creating a thematic map of phos-
phorus, for the best setup, Figure 3 shows the gen-
erated maps for all algorithms. Table 1 shows the 
prediction reliability indicators for all algorithms.

Table 1. Prediction reliability indicators with leave-one-out 
(LOO) validation, removed outliers, and 100% of data used 
for both training and validation

IDW OK LR RK
RMSE 0.9519 0.9807 0.8870 0.8744
R2 0.0894 0.0297 0.2064 0.2287

IDW – inverse distance weighting; OK – ordinary kriging; 
LR – multiple linear regression; RK – regression-kriging; 
RMSE – root mean square error; R2 – coefficient of multiple 
correlation of determination

Figure 3. Generated maps for all models: inverse distance 
weighting (IDW) (a), ordinary kriging (OK) (b), multiple 
linear regression (LR) (c), regression-kriging (RK) (d)

(b)(a)

(c) (d)

Phosphorus concentration (mg/100 g)

10   20   30
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For some of the other setups that were tested, 
only the prediction reliability indicators are shown 
in Table 2.

DISCUSSION

Concerning the quality and reliability of the digi-
tization process, as well as the resulting database 
of soil properties, it can be considered as mostly 
finished. Although enhancements are certainly pos-
sible, we believe that the database in its current 
state can be used as a reliable replacement for the 
original handwritten data. Furthermore, the number 
of georeferenced profiles is approximately half the 
number of digitized profiles reported by Arrouays 
et al. (2017) (6500) for four times larger Croatia. 

All of the profiles could not be georeferenced be-
cause a significant number of them had not been 
marked on the legacy map. On the other hand, a 
significant number of profiles that were marked 
on the map were not present, or not appropriately 
marked in the notebooks.

Although the area chosen for mapping is small, and 
hence not representative of the whole dataset, the 
results are still useful as they can serve as a gauge 
of the highest attainable result for the whole map, 
provided a similar setup. This is because, as was 
already discussed, the mapping area was purposely 
chosen to be suitable for DSM algorithms that use 
terrain attributes as ancillary predictors. Also, for 

such a small area, the results can be easily checked 
and validated by a future ground-truth campaign.

Chemistry of soil phosphorus is very complex and 
the variability of phosphorus concentration is high 
in agricultural soils (Topalović et al. 2006). As 
such, phosphorus is not as easily mappable as some 
other basic soil properties, such as clay, pH, organic 
matter, etc. However, we already mentioned that 
some researchers reported obtaining good results 
when mapping phosphorus using terrain attributes 
only. Also, there is growing interest in agricultural 
development in the mapped area, and a reliable map 
of phosphorus could be helpful in making a fertiliza-
tion program for the area.

In terms of the generated thematic maps of phos-
phorus, it is obvious that their quality is not high. The 
R2 value for the best case is 0.23, while a desirable 
value, in general, should be close to 0.80 (Hengl 
2009). Sarmadian et al. (2014) reported an R2 of 0.48 
for mapping phosphorus by regression-kriging (RK). 
Keshavarzi et al. (2015) reported an R2 of 0.68 for 
mapping phosphorus by a neural network model. 
However, Roger et al. (2014) reported an R2 value 
between 0.20 and 0.25 for various phosphorus forms.

One of the reasons for the low R2 value obtained 
might be that the mean nearest neighbour distance 
between sample points is large, 1127 m, compared 
to e.g. 300 m in Keshavarzi et al. (2015). This is 
strengthened by Sarmadian et al. (2014), where a 
variogram was presented that shows a decreasing 

Table 2. Prediction reliability indicators for other validation setups

IDW OK LR RK

10-segment validation, 100% of data used for both training and validation

RMSE 0.9720 0.9886 0.9549 0.9403

R2 0.0491 0.0149 0.0807 0.1086

LOO validation, 100% of data used for both training and validation

RMSE 0.9720 0.9850 0.9434 0.9338

R2 0.0490 0.0219 0.1028 0.1210

10-segment validation, 45% of data used for training and 55% for validation

RMSE 0.9675 0.9277 0.8882 0.8128

R2 –0.1765 –0.0853 0.0051 0.1680

LOO validation, 45% of data used for training and 55% for validation

RMSE 0.8796 0.8963 0.8214 0.7731

R2 0.0547 0.0185 0.1757 0.2699

IDW – inverse distance weighting; OK – ordinary kriging; LR – multiple linear regression; RK – regression-kriging; RMSE – 
root mean square error; R2 – coefficient of multiple correlation of determination; LOO validation – leave one out validation
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geostatistical correlation of phosphorus values after 
1000 m, and independence above 1500 m. Moreover, 
for our data, the sampling was not done on a regular 
rectangular grid (Hengl et al. 2002). Another reason 
could be the imprecision of the coordinates and the 
low resolution of the utilized DEM data (Keshavarzi 
et al. 2015). On the other side, Roger et al. (2014) 
suggested that the low R2 value they obtained might 
have been due to land use, or even due to geological 
factors and parent material. For our mapped area, 
the parent material is uniform (limestone). Land 
use should not be a factor of low R2, because there 
was low agricultural activity in the area and because 
soil sampling was done from soil profiles opened at 
places which best represent the properties of indi-
vidual mapped units and away as much as possible 
from the direct effect of human activities (Fuštić & 
Đuretić 2000). However, the spatial variability of 
soil properties that influence phosphorus sorption 
and desorption, such as particle size distribution, pH, 
Fe and Al oxides, could be the main factor of low R2.
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