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Abstract: Salinisation threatens the sustainability of irrigated olive orchards in Tunisia. Electromagnetic induction measu-
rements and soil spectral index calculations could help to survey the soil salinity. This study aimed to map changes in the 
soil salinity spatial pattern using geostatistical techniques and soil spectral index regression. The study area is located in 
Sminja, Tunisia. It is a 665 ha olive orchard, landscaped in ridges and furrows and managed following a very high-density 
planting system (1.5 × 4 m2). Electromagnetic readings measured in situ with an electromagnetic device (EM38) that was 
fitted, in turn, to the electrical conductivity of the saturated paste of five soil depths namely: 0–20, 20–40, 40–60, 60–80 and 
80–100 cm and to the average electrical conductivity of the saturated paste of the 0–100 cm soil depth. Both the ordinary 
kriging and universal kriging performed similarly and well in mapping the soil salinity. (R2= 0.86 and 0.89 for the 0–20 cm 
and the 0–100 cm depths, respectively). Our results prove that mapping the soil salinity based on electromagnetic induction 
and kriging methods is an effective approach, which allows one to monitor the soil salinity within permanent croplands 
in semi-arid conditions. Salinisation that reaches intolerable values by olive trees, is especially accumulated on the top of 
the ridges, where the drippers are installed. Furthermore, based on two Landsat 8 images acquired on April 30, 2019 and 
May 16, 2019, respectively, we calculated seven soil spectral indices. Nevertheless, multiple regression models between the 
electromagnetic readings and various combinations of soil spectral indices were poor. In the coming investigations, under 
permanent land cover, spectral index regression models should integrate not only the soil, but also vegetation indices.
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Over 30% of Tunisian arable land, i.e., 16 800 square 
km, is devoted to olive growing (Larbi et al. 2016). 
Tunisia is the fourth largest olive oil producer and 
the third biggest exporter worldwide (Radinovsky 

2019). On the national scale, the olive tree is a stra-
tegic crop that plays a crucial socio-economic and 
environmental role. Indeed, the olive crop represents 
15% of the total agricultural production value and 
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its export represents 50% of the total exported agri-
cultural goods (Filippi 2017). In addition, the olive 
sector offers 34 million working days per year, which 
represents both the direct and indirect employment of 
more than 1 million Tunisian people. It also contrib-
utes to the preservation of the landscape, and limits 
the rural exodus. Under a rain fed regime, the olive 
tree planting density is typically 100 olive trees/ha 
in the north, compared to 60 and 20 trees/ha in the 
centre and in the south, respectively (Masmoudi et al. 
2017). Whereas, in a conventional irrigated system, 
typical planting densities are 278 to 330 olives tree/
ha. Since the year 2000, an innovative crop system for 
irrigated olive orchards based on a very high density 
(VHD) was introduced in Tunisia. Currently, there 
are 4 500 ha managed according to this crop system 
in which the inter-rows distance × intra-rows spac-
ing could be 1.5 × 4 m2 or 1.5 × 3 m2, which is equal 
to 1 666 or 2 222 trees/ha, respectively (Larbi et al. 
2015). However, in semi-arid and arid conditions, 
irrigation mismanagement results in soil salinisation 
issues, which the threatens the crop productivity and 
sustainability (Hillel & Vlek 2005; Ouji et al. 2015; 
Boudabous et al. 2016).

In Tunisia, salt-affected soils occupy about 15 000 km2 
which amounts for around 30% of the total arable land 
of the country (Kahlaoui et al. 2011). Nevertheless, we 
should differentiate between primary salinity: result-
ing from natural factors, such as the original salinity 
of the soil parent material, and climatic aridity, and 
secondary salinity, also called salinisation: caused by 
mismanagement of irrigation and drainage practices 
(Shrestha 2006). Indeed, inadequate irrigation practices 
can aggravate salinity problems, causing local water 
tables to rise, which carry the salts to the soil upper 
layers. This phenomenon endangers the sustainability 
of cropping systems, through a continuous yield drop 
and soil degradation (Michot et al. 2013). About 36% 
of Tunisian irrigated lands are affected by salinisa-
tion (Bouksila et al. 2010). Accordingly, surveying 
the spatial variability of the soil salinity is of great 
interest in order to carry out or to underpin soil 
reclamation actions that counteract forthcoming 
rises in the soil salinity. Most often, assessing and 
predicting the soil salinity are costly and performed 
with laborious field sampling (Farifteh et al. 2007; Yao 
et al. 2008). Therefore, it is of prime importance to 
explore alternative methods, to investigate the spatial 
soil salinity. The apparent electrical conductivity (EC) 
measured by electromagnetic induction (EMI) de-
vices coupled with remote sensing (RS) techniques 

have been promoted as tools for estimating the soil 
salinity on different scales (Ding & Yu 2014; Taghi-
zadeh-Mehrjardi et al. 2014; Yao et al. 2015). EMI 
is a rapid and non-destructive method to measure 
the EC. Akramkhanov et al. (2014) conducted a re-
peated EMI survey in Uzbekistan to monitor the soil 
salinity and considered that the EMI system is an 
efficient and consistent method. Also, Li et al. (2012) 
tried to account for the spatio-temporal variations 
in the total dissolved salts content in arid region of 
South Xinjiang, China. Furthermore, Liu et al. (2016) 
have collected EC data with a portable EM38-MK2 
device and explored the spatial distribution of the 
soil salinity in the Yellow River Delta, China, using 
a geostatistical analysis. In the same framework, 
Taghizadeh-Mehrjardi et al. (2014) attempted to 
model the vertical and lateral variation of the soil 
salinity in central Iran by a combination of an RS 
and EMI system and, by applying a regression tree 
analysis, they found that the EC has a significant 
linear correlation with the electrical conductivity of 
the soil (ECe) for the upper 0–30 cm layer, whereas 
a lower correlation was found with the ECe for the 
bottom 30–60 cm layer. Also, Ding and Yu (2014) 
combined RS and EMI in order to screen and evaluate 
the spatial and seasonal changes of the soil salinity, 
and they proved that the spatial distribution of the 
soil salinity differed from small vertical or horizontal 
distances and that dissolved salts remain concen-
trated in the surface which limits their mobility in 
arid and semi-arid areas. By combining RS and EMI 
techniques, Wu et al. (2009) studied the spatial vari-
ation of the soil salinity in Feng-qiu County, China, 
and established regression models between the field 
measured EC and the soil and vegetation spectral 
indices. Therefore, compared to conventional field 
work and the ensuing laboratory measurements, the 
combination of EMI and remote sensing data can 
be useful to predict the ECe fairly, rapidly and ac-
curately (Liu et al. 2003; Zhang et al. 2009). Kriging 
techniques, such as ordinary kriging (OK), universal 
kriging (UK), indicator kriging and co-kriging, refer 
to a group of geostatistical interpolation methods. 
Kriging is the most appropriate to interpolate soil 
data, for which there is a spatially correlated distance 
or directional bias. It assumes that the distance or 
direction between the sample points reflects a spatial 
correlation that can be used to explain the variation 
in the surface (Knotters et al. 2010). Kriging serves to 
predict the value at one unobserved point based on 
a linear combination of the values at neighbouring 
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observed points, the weights for the observed points 
are attributed according to a model that describes 
the spatial structure of the environmental variable 
(Webster & Oliver 2007). The most general and 
widely used kriging method is OK. However, the 
choice of which kriging method to use depends on 
the spatial structure of the environmental variable. 
For instance, in a case where the distribution of the 
environmental variable shows a strong trend, UK, 
also referred to as kriging with a trend model, may 
perform better than OK (Mesić Kiš 2016). Kriging is 
performed in two-steps. In the first step, an empirical 
semi-variogram is computed for all pairs of locations 
separated by distance h. The semi-variogram can be 
defined as the average squared difference between 
the components of the data pairs (Oliver & Webster 
2014) as in the following equation:

 	  (1)

where:
N(h)	– the number of pairs of observations (i, j) sepa-

rated by a spatial distance h;
zi, zj	 – the attribute values of the i and j observations, 

respectively.

In the second step, a model is fitted to the cloud 
of points forming the empirical semi-variogram, 
and then it is used for the prediction in unsampled 
locations. Kriging forms weights from the surround-
ing measured values to predict the unmeasured 
locations. The empirical semi-variogram graph, 
depicts the spatial dependence in the attribute values 
of the observations. Three characteristics serve to 
describe the fitted model: (i) the range is the spatial 
distance from which the observations are no longer 
auto-correlated, where the model first flattens out. 
(ii) the sill, corresponds to the value on the y-axis, at 
which the semi-variogram model attains the range, 
and (iii) the nugget corresponds to the model semi-
variogram value at zero separation distance. The 
nugget effect represents small-scale spatial varia-
tions. This parameter indicates how noisy the spatial 
structure is (Figure 1).

The objectives of this study were to (i) investigate 
the spatial and the depth of the soil salinity changes 
on the local-scale of the RF landform, (ii) predict 
the ECe at various soil depths based on the EM 38 
readings, (ii) map the ECe in the study zone for the 
soil depths demonstrating the highest correlations 
between the ECe measured in the laboratory and 

predicted based on the EM38 readings, (iii) attempt 
to calibrate the spectral models of the pedo-transfer 
that match the predicted ECe values with several 
derived soil spectral indices.

MATERIAL AND METHODS

Study area .  The study area is  s ituated be-
t w e e n  9 ° 5 9 ' 8 ' ' E ~ 1 0 ° 1 ' 3 7 ' ' E  l o n g i t u d e  a n d 
36°26'30''N~36°28'30''N latitude. It lies in the south 
of the Bir Mcherga Dam, in the north-west of the 
governorate of Zaghouan, 50 km south from the capi-
tal Tunis (Figure 2). The land area covers 6.65 km2 
and belongs to an agribusiness firm. As a part of 
the Sminja plain, the landform of the study area is 
almost flat. The elevation ranges between 141 m a.s.l. 
in the south end, and 117 m a.s.l. in the north end, 
with a gentle, but regular, slope of 0.96% in a south-
west/north-east direction, oriented from the plain 
to the riparian dam. The study area is characterised 
by a semi-arid climate. The average annual rain-
fall recorded over the last 11-years is 390 mm. The 
rainfall is concentrated in the autumn and winter 
accumulating 75% of the total annual precipitation 
on average. Whereas the spring and the summer are 
dry seasons accumulating 21 and 4% of the aver-
age total annual precipitation, respectively. A large 
water deficit occurs during these two dry seasons. 
The monthly average temperature ranges between 
8 °C in January and 42 °C in August with an annual 
average of 18  °C. The soils of the study area are 
composed of deep monolithic Vertisols. They are 

Figure 1. Illustration of the empirical semi-variogram (cloud 
of points), fitted by an exponential function and model 
range, sill, and nugget components (Oliver & Webster 2014)
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the product of the weathering of marl rock. These 
soils are characterised by a high swelling clay con-
tent, a high limestone content, an alkaline pH, a clay 
loamy texture, and a low hydraulic conductivity in 
a saturated condition. The surface horizon and the 
bottom horizon have granular and block-like struc-
tures, respectively. These soils are be suitable for 
other fruit tree crops. The land cover of the study 
area is an evergreen olive orchard managed follow-
ing a crop mix system, made up of two introduced 

varieties, namely: Arbosana and Arbequina. This 
olive orchard was created twenty-two years ago in 
1999, according to a VHD pattern. Indeed, the plant-
ing density is 4 × 1.5 m2 and the trees are cultivated 
in hedges, with an annual average yield of 7–8 t/ha. 
The land surface is landscaped using a ridge and fur-
row RF planting pattern, which consists of shaping 
ridges and alternating then with furrows. The trees 
are planted into the top of the ridges which are raised 
1 m above the level of the furrows. The RF system 
enables one to capture the rainfall well, to improve 
the water-use efficiency and to mitigate the harmful 
effects of the accumulation of salts within the root 
zone, especially because the soil poorly drains and 
is an asphyxiant (Masmoudi et al. 2017) (Figure 3). 
The olive orchard is supplied with water from the 
Bir Mcherga Dam. The motor-pump units installed 
at the edge of the dam’s reservoir deliver the water 
into a geo-membrane collection basin with a capacity 
of 5 000 m³. After filtration, this water is distributed 
into the drip irrigation network. The olive orchard is 
particularly irrigated in the spring and the summer 
dry periods. The salinity of the dam water varies on 
an annual and inter annual scale, according to the 
rainfall. Over the last ten years, the annual average 
salinity was 2.6 g/L. Nevertheless, in May 2019, 
the dam water salinity was equal to 5.8 g/L and the 
electrical conductivity was equal to 7.6 dS/m. The 
water supply is modulated according to the amount 
of rain that has fallen, which is especially provided 
during the spring and summer dry seasons.

Field campaign. The field campaign, including 
the soil sampling and EM38 readings, occurred from 
1 to 16 May, 2019. This matches the start of the dry 
season, during this period, the soil, not yet irrigated, 
is at its maximum dryness. Indeed, water is only 
supplied during the dry season.

km

Mediterranean Sea

Libya

Algeria

Tunisia boundary
Study area
Zaghouan

Figure 2. Location of the study area on the administrative 
map of Tunisia

Drip irrigation

Salt
accumulation Olive tree

Furrow
Ridge

1 m

4 m

Soil sampling point

Figure 3. Cross-section of three planted ridges within the study area
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Changes in the salinity of the soil profile, be-
tween the ridges and furrows. In the preliminary 
stage, we investigated the changes in the salinity of 
the soil profile between the ridges and furrows and 
described how the accumulation of salt in the soil 
profile could vary over short distances depending 
on the cropland micro-relief. Thus, two transects 
of 9 linear meters each alongside two olive orchard 
diagonals were prospected. The samples were col-
lected into the three micro-morphologies of the 
cropland namely: furrows, flanks, and peaks of the 
ridges. Twenty-four surveyed locations were sampled 
(4 ridges + 4 flanks + 4 furrows) × 2 transects). To 
have a continuous characterisation of the soil salin-
ity profile, at each prospected location, the soil was 
sampled using a manual auger (diameter = 7 cm) at five 
depths (0–20, 20–40, 40–60, 60–80 and 80–100 cm). 
A total of 120 soil samples were collected within the 
study area (24 prospected locations × 5 depths). This 
first set of samples was brought to the laboratory, 
air-dried, crushed and sieved through a 2 mm sieve 
then analysed for the ECe according to the standard 
method (Richards 1954).

EM38 calibration. The calibration of the EM38 device 
(Geonics, Ltd., Mississauga, Canada), consists of con-
verting the readings acquired in the vertical mode (ECV) 
and in the horizontal mode (ECH) in the field into ECe, 

(Amezketa 2007). In our case, ten geo-referenced RF 
micro-relief locations, evenly spread across the entire 
study area were selected. For each location, two points, 
spaced by 2 m from each other, the first into the ridge 
and the second into the neighbouring furrow, were 
surveyed. For each point, a pair of EM readings were 
made, the first one with the coil of the EM38 device 
positioned horizontally to the soil surface for the ECH 
and the second one with the device positioned verti-
cally for the ECV. After each pair of EM38 readings, the 
soil sampling was systematically carried out for every 
20 cm of depth up to 100 cm. That is, at five depths, 
namely: 0–20, 20–40, 40–60, 60–80 and 80–100 cm. 
Thus, a total of 100 samples were collected (10 (sur-
vey sites) × 2 (a couple of points, one in the ridge and 
a second in the furrow) × 5 (depths)) (Figure 4). This 
second set of soil samples was brought to the labora-
tory, air-dried, crushed and sieved through 2 mm sieve 
and then analysed for the ECe as well.

Thereafter, six separate calibration equations were 
established to investigate the relationship between 
the ECe at various depth and the EM38 readings. 
The first five Equations correspond to the five suc-
cessive soil depths, respectively, and the sixth equa-
tion corresponds to the average ECe referred to as 
ECe(0–100 cm). ECe(0–100 cm), was calculated according 
to the following formula:

km

Plot

Soil sampling points (adjacent ridges and furrows)

EM38 sampling points

Study area boundary

Figure 4. Location of the study area, ground sampling points and EM38 measuring sites; the plots refer to the small 
locations where the transects were prospected
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ECe(0–100 cm) = [2ECe(0–20 cm) + 1.5ECe(20–40 cm) +  
                       + ECe(40–60 cm) + 0.5ECe(60–80 cm) +  
                       + 0.25ECe(80–100 cm)]/5 	  

(2)

The weighting factor, attributed to the ECe of each 
depth, is proportional to the fraction of the roots 
which colonise that depth. That is, proportional to 
the contribution of each depth to the water uptake 
by the olive tree (CRUESI 1970; Hachicha 2016).

ECe prediction and spatial interpolation. The 
EM readings data that served to first predict then 
to interpolate the ECe by kriging methods were col-
lected in 160 RF locations adequately covering the 
whole study area. In each location, the EM readings 
(ECH and ECV) were carried out in two close points, 
spaced by 2 m, the first into the ridge and the second 
in the closest neighbouring furrow. In each point, 
the reading was successively made in the horizontal 
and then in the vertical mode. In total, 640 EM read-
ings were taken (160 (locations) × 2 (RF) × 2 (pairs 
of reading in the vertical and horizontal modes)). 
The locations were georeferenced by GPS (Trimble® 
GeoExplorer XM series 3000) with a precision of 
1–3 m. (Figure 4). The ECe predictions on the 160 EM 
reading served to spatially interpolate the ECe in 
the study area. Using the geostatistical analyst tool 
implemented in ArcGIS® 9.3.1, two geostatistical 
methods were used and compared to assess which 
one performed better, namely: OK as it is the default 
method, but also the UK method since, in our study 
area, a gentle, but regular, slope prevails, which could 
hide an overriding trend in the spatial structure of the 
variable. The two methods were compared for their 
effectiveness. The accuracy of the produced maps 
were assessed using the leave one-out cross valida-
tion. Three criteria were calculated to evaluate the 
performance of the regression models, namely, the 
mean error (ME), root mean squared error (RMSE), 
and coefficient of determination (R²). The formulas 
of these criteria are as follows: 

 	  (3)

 	  (4)

 	  (5)

where:
Z*(Si)	 – the interpolated value;
Z(Si)	 – the observed value;
Z(Si) ave	– the average of the observed values;
M	 – the number of samples (160). 

The ME measures how far away the errors are 
from the actual value. The smaller RMSE indicates 
a better fit.

Remote sensed data and derived spectral salin-
ity indices. The images used in this study were ob-
tained from the Landsat 8 Operational Land Imager 
(OLI-8). They were acquired on April 30, 2019 and 
May 16, 2019. These dates match with the period 
of the field campaign. These images were at the 
end of spring and the beginning of summer. During 
this period, the irrigation had not yet started in the 
olive orchard, and the salts accumulated in the soil 
profile are at their highest concentrations. Indeed, 
one of the adopted practices, particularly during the 
summer, to manage the salinity, consists of draining 
the salts out of the root zone, by majoring the water 
requirements with a leaching fraction.

Atmospheric and radiometric corrections were 
implemented for each band separately. The COST 
model (the COSine of sun zenith angle (T)) by Chavez 
(1996) was used to convert digital numbers to sur-
face reflectance for both images by using the Envi-
ronmental for Visualizing Images (ENVI Ver. 5.2) 
software package®.

We calculated seven relevant and well-known, in 
the literature, soil salinity spectral indices. They 
are as follows: the normalised difference vegetation 
index (NDVI) (Deering & Rouse 1975), the difference 
vegetation index (DVI) (Tucker 1979), the brightness 
index (BI) (Khan et al. 2005), the salinity ratio (SR) 
(Metternicht & Zinck 2003), salinity index 1 (SI1) 
(Douaoui et al. 2006), salinity index 2 (SI2) (Bannari 
et al. 2008), and salinity index 3 (SI3) (Abbas & Khan 
2007). The calculation formulas for these indices are 
summarised in Table 1.

Once the matrices of these indices were calculated 
using the spatial analyst tool (Extract Multi Values 
to Points) implemented in the ArcGIS® Ver. 9.3.1 
software, we simultaneously extracted, from these 
matrices, the pixel values that match the 320 EM38’s 
field readings. While exploring various combinations 
of these soil salinity indices as dependent variables 
and the predicted ECe (based on EM38 measure-
ments) as the independent variable, we established 
several multiple linear regressions and assessed their 
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prediction performances. If the assessment of these 
models linking the predicted ECe (based on EM38 
readings) to the combination of the spectral indices 
prove that they perform well, then they could serve, in 
the future, at least to monitor changes in the spatio-
temporal soil salinity, with no need for soil sampling 
and ECe analysis in the laboratory. The calibrated 
models were assessed by calculating the ME, the R² 
and the RMSE, between measured and predicted 
values, as well.

RESULTS AND DISCUSSION

Changes in the salinity of the soil profile be-
tween the ridges and furrows. In the two investi-
gated transects, the laboratory analysis revealed that 
the salt distribution in this irrigated area displays 
an abrupt change between the ridge and the furrow. 
Such a result is essentially due to the irrigation sys-
tem (drip) and the surface geometry (Figures 5A, B). 
However, salts mostly accumulated in the side and 
the top of the ridges in contrast with the furrows. 
The ridges are separated by the furrows 4 m in width 
as well. Many geostatistical studies of soil salinity 
data (Douaoui et al. 2006; Michot et al. 2013) have 
underlined the variability in the soil salinity over 
short distances. Consequently, we have developed 
two distinct maps, one for the spatial distribution 
of the soil salinity in ridges and the other for the 
spatial distribution of the soil salinity in furrows.

Descriptive statistics of the EM38 readings and 
the ECe. The summary statistics of the soil EM38 

readings and the ECe at the five sampled depths (0–20, 
20–40, 40–60, 60–80 and 80–100 cm) are displayed 
in Table 2. The mean ECe for the five sampled depths 
ranged between 5.62 and 8.27 dS/m in the soil profiles. 
ECe (0–20 cm) was the highest, which indicates that 
salts have accumulated in the surface layer, especially 
in the top layer, where the ECe varied from 0.47 to 
26.1 dS/m. The coefficient of variation of the ECe 
for the five sample depths ranged from 0.61 to 0.96 
displaying strong spatial variability. Moreover, the EC 
values measured under the horizontal and vertical 
modes ranged between 32 and 278 mS/m. 

Prediction of ECe based on EM38 readings. First 
of all, we used linear regression analysis between the 
ECe values of each layer and the EC measurements 
taking the EM38 readings (ECH and ECV) as indepen-
dent variables. The results showed that multivariate 
models give the best fit (R² between 0.63 and 0.89), 
which are presented in Table 3. Compared to the 
simple regression on the ECH or on ECV each taken 
separately, the results are not shown here.

In addition, the scatter plots of the measured vs. 
predicted for each depth and the average the ECe 
are shown in Figure 6. Scatter plots of: (A) 0–20 cm, 
(B) >20–40 cm, (C) >40–60 cm, (D) >60–80, (E) >80 to 
100 cm and (F) 0–100 cm using calibrated models.

From this figure, we remarked that the predicted 
ECe of the top two depths and the average ECe had 
better accuracies, while the remaining depths were 
less accurate.

Spatial interpolation using OK and UK. For both 
the OK and UK methods, the 160 ECe values derived 

Table 1. Soil salinity indices based on the different band ratios of the Landsat 8 OLI

Spectral index Calculation formula Reference

Normalised difference  
vegetation index (NDVI) Deering and Rouse (1975)

Difference vegetation index (DVI) Tucker (1979)

Brightness index (BI) Khan et al. (2005)

Salinity ratio (SR) Metternicht and Zinck (2003)

Salinity index 1 (SI1) Douaoui et al. (2006)
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from the EM38 measurements (ECH and ECV) were 
fitted with an exponential theoretical model using 
the geostatistical analyst tools in ArcGIS® Ver. 9.3.1 
(Table 4). The ECe variable is considered to be aniso-
tropic, i.e., there is a directional effect and the vari-
able does not vary in the same way in all directions, 
to find the best theoretical description of the spatial 

structure characteristic in the ECe in the study area. 
The cross-validation test indicates that the exponential 
model gives the best fit (the R² between the observed 
and fitted values is 0.79 and 0.92 for the furrows and 
for the ridges, respectively) for both the OK and 
the UK (Table 5). The maps of the ECe (0–20 cm) and 
average ECe (0–100 cm) for both the ridges and the 

Table 2. Descriptive statistics of the soil ECe and electromagnetic readings

Layer (cm) N Min Max Average SD CV Skewness
ECe (0–20) 20 0.47 26.1 8.27 7.9576 0.9618 0.6067
ECe (> 20–40) 20 0.53 13.2 5.62 4.5088 0.8018 0.2175
ECe (> 40–60) 20 0.64 14.08 5.93 4.7273 0.7976 0.2377
ECe (> 60–80) 20 0.82 12.74 6.11 4.4197 0.7236 0.0168
ECe (> 80–100) 20 0.93 12.04 6.5 4.0183 0.6179 –0.1771
Average ECe 20 0.61 19.24 7.09 6.00 0.8470 0.3701
ECV ridge 1.60 0.43 2.14 0.81 0.26 0.03 6.44
ECH ridge 1.60 0.49 2.08 1.37 0.28 0.21 –0.02
ECV furrow 1.60 0.69 2.78 1.26 0.39 0.31 2.84
ECH furrow 1.60 0.32 2.41 0.64 0.34 0.53 11.93

ECe – soil electrical conductivity (dS/m); ECV – electrical conductivity, device positioned vertically (dS/m); ECH – electrical 
conductivity, device positioned horizontally (dS/m); SD – standard deviation; CV – coefficient of variation

Figure 5. Distribution of the soil 
electrical conductivity (ECe) in two 
distinct transects made up of three 
consecutives ridges and furrows: 
southern plot (A), northern plot (B)
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furrows were produced using OK which was the same 
as the UK (the same R²). These maps are displayed as 
Figure 6A, B and Figure 7A, B, respectively. From the 
figures, it is easy to realise that the extremely salinised 

part (high level of ECe derived from the EM38 readings) 
represents almost all the irrigated area, except for the 
southern border (for the ridges) and a small, salinised 
region in the north-west of the olive orchard (for the 

Table 3. Soil electrical conductivity (ECe) prediction t models for the different soil depths based on the electromagnetic 
readings under the horizontal and vertical modes, as independent variables

Soil layer (cm)
ECe= a + bECH + cECV

a b c R²
0–20 2.98993 0.13400 –0.08065 0.86
> 20–40 1.97311 0.07826 –0.04176 0.87
> 40–60 1.29518 0.08076 –0.03492 0.79
> 60–80 1.11311 0.07629 –0.02712 0.78
> 80–100 2.82511 0.06158 –0.02524 0.63
Average ECe 2.42436 0.10478 –0.05804 0.89

Figure 6. Scatter plots of the measured vs. predicted soil electrical conductivity (ECe): 0–20 cm (A), > 20–40 cm (B), 
> 40–60 cm (C), > 60–80 cm (D), > 80–100 cm (E) and 0–100 cm (F) using calibrated models
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Table 5. Accuracy comparison for the two kriging methods

Interpolation method
Ridges Furrows

R² RMSE ME R² RMSE ME

Ordinary kriging ECe (0–20 cm) 0.79 1.03 2.44 0.81 1.16 1.91
average ECe 0.92 1.08 1.85 0.79 1.14 1.58

Universal kriging ECe (0–20 cm) 0.79 1.03 2.44 0.81 1.16 1.91
average ECe 0.92 1.08 1.85 0.79 1.14 1.58

ECe – soil electrical conductivity; RMSE – root mean squared error; ME – mean error

furrows). This was due to inappropriate irrigation 
with brackish water during the spring. Besides, ir-
rigation is practiced empirically without consider-
ing the real water requirements of the olive trees. 
Furthermore, the increased evapotranspiration level 
aggravates the severity of the soil salinity. Likewise, 
this can be explained by the surface geometry and 
the planting ridges where the drippers are located. 
In fact, the physicochemical properties of the soil 
give it the character of being heavy, not porous and 
not very permeable, which makes the salts’ mobility 
slow and static and their lateral extension irregular 
and interrupted. The salts remain just on the ridges 
and their lateral migration towards the furrows is 
almost insignificant, which creates a net contrast over 
short distance. As reported in Table 5, the valida-
tion statistics (R-square, RMSE and ME values) are 
relatively the same for both interpolation methods 
(OK and UK). We also noted that OK and UK could 
achieve land cover mapping with a very good ac-
curacy equally well.

Spectral index regression. For both images, we 
used stepwise regression considering the spectral 
indices as independent variables to obtain univari-
ate and multivariate models which are displayed in 
Table 6. 

For all the calibrated models, the R-square values 
range between 0.01 and 0.12, which indicates that 
the soil salinity indices adopted in this study are not 
good for predicting the ECe from remotely sensed 

Table 4. Semi-variogram parameters of the topsoil and average electrical conductivity and its validation

Location Variables (dS/m) Theoretical 
model Nugget Range Sill R² Residual  

error SD

Ridges average EC (0–100 cm) exponential 1.13 702.01 8.65 0.92 1.05 1.94
EC (0–20 cm) exponential 2.83 813.83 1.46 0.79 1.03 2.53

Furrows average EC (0–100 cm) exponential 1.32 1 674.31 1.93 0.79 1.2 1.69
EC (0–20 cm) exponential 2.11 1 654.33 2.46 0.81 1.17 2.09

EC – electrical conductivity; SD – standard deviation

Figure 7. Spatial distribution of the soil electrical con-
ductivity (ECe) on the ridges using ordinary kriging: 
ECe (0–20 cm) (A); average ECe (0–100 cm) (B)
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Table 6. Univariate and multivariate regression models between the spectral indices and soil electrical conductivity of 
the top layer and average ECe (0–100 cm)

Acquisition date Position Regression models (P < 0.01) R² RMSE ME

April 30, 2019
furrows

ECe (0–20 cm) = 13.73 + 260.84 × BI – 396.72 × SI1 + 117 × SI3 0.121 2.24 5.02
average ECe (0–100 cm) = 11.48 – 88.65 × SI1 + 58.03 × SI3 0.099 1.85 3.43

ridges ECe (0–20 cm) = 7.19 + 84.44 × ρOLI2 0.013 2.77 7.67
average ECe (0–100 cm) = 6.17 + 65.41 × ρOLI2 0.012 2.19 4.82

May 16, 2019
furrows ECe (0–20 cm) = 7.38 – 19.57 × ρOLI3 0.023 2.34 5.5

average ECe (0–100 cm) = 6.91 – 16.67 × ρOLI3 0.025 1.92 3.68

ridges ECe (0–20 cm) = 12.15 + 6.35 × NDVI 0.01 2.77 7.7
average ECe (0–100 cm) = 9.66 + 5.73 × NDVI 0.011 2.19 4.83

ECe – soil electrical conductivity; RMSE – root mean squared error; ME – mean error

data. The low correlation coefficients obtained for 
the spectral indices’ multiple regression models, 
reflect a relatively narrow relationship between the 
soil salinity and the spectral indices for the case of 
clayey soils having accumulated salts in a linear, dis-
continuous and interrupted way. Besides, the images 
have a spatial resolution of 30 m which is smaller than 
the sampling interval adopted in this study which 
ranged between 50 and 100 m. Furthermore, the high 
vegetation cover in the olive orchard makes it that 
the remotely sensed data could provide information 
about the vegetation stress, but not directly about 
the soil salinity.

Previous studies (Wu et al. 2009; Ding & Yu 2014; 
Taghizadeh-Mehrjardi et al. 2014) have reported that 
combining the EMI system and remote sensing could 
provide information about the salt distribution fairly 
quickly, which was not our case. Nevertheless, it is 
convenient to remind the reader that the study area 
of Ding and Yu (2014) was a Delta Oasis between 
the Werigan and Kuqa River in the northern rim of 
Tarim Basin, Xinjiang, China, with a relatively meagre 
land cover, thus the remote sensed data are rich on 
information on the soil. Taghizadeh-Mehrjardi et al. 
(2014) underlined that most of their study area is bare 
land, therefore, a change in the soil conditions can 
be directly detected by remote sensing. Whereas, to 
improve the prediction of the ECe, Wu et al. (2009) 
established regression models based on a combina-
tion of the soil and land cover spectral indices. There 
are some plausible explanations behind our failure 
to predict the ECe based on spectral index regres-
sions. Firstly, the surface geometry (i.e., presence of 
ridges and furrows) that causes a sudden change in 
the salt distribution (salts accumulated in a linear, 
discontinuous and interrupted manner). Secondly, 

the high vegetation cover and its reflectance influ-
ence the reflectance value from the multispectral 
image data. Thirdly, the spectral resolution of the 
multispectral data (30 × 30 m) is quite low, so the 
image data did not capture the soil salinity well. As 

Figure 8. Spatial distribution of the soil electrical con-
ductivity (ECe) on the furrows using ordinary kriging: 
ECe (0–20 cm) (A); average ECe (0–100 cm) (B)
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a result, the detection of the salts’ spatial variability 
from the remotely sensed data is still challenging for 
an evergreen land cover. Metternicht and Zinck (2003) 
reported that lands with a canopy are problematic 
for soil salinity mapping by RS data.

CONCLUSION

Soil salinity mapping using the  OK and UK method, 
based on EM38, at different depths within a VHD olive 
orchard landscaped in RF was accurately achieved 
and the spatial pattern of the salinity was finely 
described. Nevertheless, we failed in the soil salin-
ity mapping based on the soil spectral indices. This 
is mainly explained by the fact that the olive tree 
canopy largely covers the land, which impeach to 
capture data on the soil from the remote sensed 
images. In future investigations, to improve the 
prediction performance of the spectral index model, 
plant indices, such as the leaf area index (LAI) and 
vegetation water content (VWC) derived from the 
remote sensing image data should be combined with 
soil the indices. 

Notwithstanding, our results revealed a very strong 
localised salinisation that reaches intolerable values 
for the olive trees, especially on the top of the ridges 
(where the drippers are localised), in fact, such a re-
sult is related to the quality of the irrigation water, as 
saline water is the main source available in the semi-
arid region. Such a kind of management can lead to 
soil degradation. Therefore, there is an urgent need 
to review this land management practice. It is recom-
mended to combine the irrigation water supply from 
the Bir Mcherga Dam with salinity mitigation measures. 
Besides, improving the soil structure can lead to the 
creation of a more porous soil allowing for the faster 
mobility of the salts and their evacuation outside the 
root zone. This presumes a supply of organic matter 
and its burial under the drippers, this measurement 
must be accompanied by calcium intakes which may 
be beneficial to the soil structure and which alleviate 
the alkalisation process, gypsum spreading may be an 
appropriate solution for this calcium intake. Other-
wise, looking for other irrigation water sources with 
better quality and a lower salinisation effect could be 
an option, though also, the use of deep groundwater 
or even groundwater would be a solution to avoid 
the strong salinisation recorded. Finally, it should be 
noted that the soils outside the perimeter have no 
aspect of salinisation, either primary or secondary, 
and that this process is essentially anthropogenic in 

this part of the Miliane watershed. This practice of 
irrigation combining salty water with fine textured 
soils is to be avoided in any hydro-agricultural project, 
especially in arid and semi-arid zones. This leads to 
the partial loss of soil resources and accentuation of 
the desertification process. 
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