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Abstract: Forest soils have a high potential to store carbon and thus mitigate climate change. The information on spatial 
distribution of soil organic carbon (SOC) stocks is thus very important. This study aims to analyse the importance of 
environmental predictors for forest SOC stock prediction at the regional and national scale in the Czech Republic. A big 
database of forest soil data for more than 7 000 sites was compiled from several surveys. SOC stocks were calculated 
from SOC content and bulk density for the topsoil mineral layer 0–30 cm. Spatial prediction models were developed 
separately for individual natural forest areas and for four subsets with different altitude range, using random forest 
method. The importance of environmental predictors in the models strongly differs between regions and altitudes. 
At lower altitudes, forest edaphic series and soil classes are strong predictors, while at higher altitudes the predictors 
related to topography become more important. The importance of soil classes depends on the pedodiversity level and 
on the difference in SOC stock between the classes. The contribution of forest types as predictors is limited when one 
(mostly coniferous) type dominates. Better prediction results can be obtained in smaller, but consistent regions, like 
some natural forest areas.

Keywords: carbon stocks; digital soil mapping; environmental covariates; random forests; spatial distribution; terrain 
attributes
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The total forest ecosystem carbon (C) stock is large 
and in dynamic equilibrium with its environment (Lal 
2005). There is a high potential for C sequestration 
and forest soils can thus contribute significantly to 
climate change mitigation. The ratio of C storage 
between tree biomass and soil depends on climate. 
At colder climate, lower C amounts are incorporated 
in tree biomass, but the soil organic carbon (SOC) 
stocks in soil are increased due to slower decompo-
sition (Wen & He 2016). As the built-up of organic 

matter is a long-term process, forest continuity is 
an important factor of the SOC stocks in forest soils 
(Nitsch et al. 2018), as well as forest age (Jonard et 
al. 2017). Recovery of SOC stocks after forest soil 
disturbance can take decades (Dobor et al. 2018).

Factors influencing SOC amount in forest soils 
include (Lal 2005): climatic factors, topography, soil 
characteristics, natural disturbance, and anthropo-
genic factors (forest management, afforestation, and 
deforestation). Chuman et al. (2021) concluded that 
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elevation (reflecting temperatures and precipitation 
levels) belongs to the most important factors control-
ling SOC pools in Podzols and Cambisols, together 
with legacy acid deposition of S and N compounds. 
The anthropogenic influence is particularly pro-
nounced in forest floor and mineral topsoil.

The information on SOC stock spatial distribution 
and the influencing factors is important for the assess-
ment of forest ecosystem functioning, soil ecosystem 
services, soil fertility, as well as a support for decision 
making in forest and environmental management. 
Digital soil mapping (DSM) provides a useful and ef-
ficient tool for the description and assessment of soil 
properties spatial distribution. General framework of 
DSM as the quantitative prediction of soil properties 
or classes using soil information and environmental 
covariates (scorpan model) was formalised by McBrat-
ney et al. (2003). Digital mapping of SOC contents 
or stocks is one of the most frequent applications of 
DSM (e.g. Lamichhane et al. 2019). Various prediction 
models are used, and various sets of covariates (pre-
dictors) are tested. Miller et al. (2015) tested a pool 
of 412 potential predictors and found that models 
with limited predictor pools can substitute other 
predictors to compensate for the missing variables. 

Random forests (RF, Breiman 2001) is one of the 
most often used prediction methods in DSM (e.g. Cal-
vo de Anta et al. 2020; Yamashita et al. 2022). However, 
Were et al. (2015) found that RF overestimated SOC 
stocks compared to models based on support vector 
regression and artificial neural networks. Martin 
et al. (2014) found that robust geostatistical model-
ling of residuals from tree-based models improved 
the prediction accuracy significantly when a limited 
number of predictors were included. 

Many studies on digital mapping of SOC stocks 
focus on mineral topsoil 0–30 cm as there is usually 
the highest amount of SOC stored (e.g. Wiesmeier 
et al. 2012; Minasny et al. 2013; Yamashita et al. 
2022). According to De Vos et al. (2015), the mineral 
layer 0–30 cm contains approximately 55–65% of the 
total SOC stock in forest soil profiles. 

Various surveys of forest SOC content have been 
performed and various legacy data are available. 
However, different sampling designs, protocols and 
depth, different analytical methods, and data aging 
make the combination of data from different sources 
difficult and challenging (Borůvka et al. 2018; Bai & 
Fernandez 2020).

The aim of this study was to analyse the importance 
of environmental predictors for forest SOC stock 

prediction at the regional and national scale in the 
Czech Republic and to compare relative importance 
of the predictors in contrasting subsets of the na-
tional forest soil database compiled from several 
large-scale soil surveys.

MATERIAL AND METHODS

Study area and soil data. This study is done on 
the whole forested area of the Czech Republic, be-
longing to the temperate forest zone. The country 
has an elevation ranging from 115 to 1 602 m a.s.l. 
Mean annual temperatures are in the range from 
1 to 10 °C, with mean annual precipitation ranging 
between 400 and 1 400 mm. Forests cover 26 551 km2, 
forming 34.2% of the total country area. The Czech 
Republic is divided into 41 natural forest areas (NFA, 
http://www.uhul.cz/what-we-do/regional-plans-of-
forest-development). These spatially compact areas 
are rather homogeneous territories defined on the 
basis of geological, climatic, orographic and phyto-
geographical conditions.

A database of forest soil data from the years 2000 to 
2020 was compiled from several resources: (i) Na-
tional Forest Inventory (NFI) done by the Forest 
Management Institute (FMI, Forest Management 
Institute 2007); (ii) Data from permanent typologi-
cal areas collected also by the FMI; (iii) Forest Soil 
Monitoring (FSM) done by the Central Institute for 
Supervising and Testing in Agriculture (Fiala et al. 
2013); (iv) Data originating from the international 
projects ICP Forest and BioSoil (Lorenz & Becher 
2012; Šrámek et al. 2013). As the surveys used dif-
ferent methodology and different sampling depths 
or horizons, the data were recalculated to the top-
soil mineral layer 0–30 cm using weighted average. 
SOC content was mostly determined by oxidimetric 
method; comparability of other methods used in the 
surveys was tested. SOC stocks were calculated from 
the SOC content and bulk density (BD). Where the BD 
was not available, an estimate of BD was calculated 
using the model by Honeysett and Ratkowsky (1989): 

BD = 1/(0.564 + 0.0556 × OM) (g/cm3)

where:
OM (organic matter) = 1.724 × SOC (%). 

Rock fragments were not taken into account as 
this information was not available on all sites and, 
moreover, the accuracy of rock fragment content 
is generally low. In total, SOC stock values at the 
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0–30 cm depth were collected from 7 338 forest stands 
all over the country, though the spatial distribution 
is not even and there are some gaps (see Figure 1D).

Potential covariates. Terrain data were extracted 
from the digital elevation model (DEM) ArcČR®500 
with resolution 200 m (ARCDATA PRAHA, ZÚ, ČSÚ, 
2016; Figure 1A). Secondary terrain characteristics 
were calculated using Terrain Analysis Toolbox in 
SAGA GIS 2.1.4 (Conrad et al. 2015). The follow-
ing terrain attributes were determined: elevation 
(m a.s.l.), slope, aspect (cos and sin), planar and 
profile curvatures, convergence index, catchment 
area, valley depth, relative slope position (RSP), 
channel network base level (CNBL), channel network 
distance (CND), topographic wetness index (TWI), 
LS factor (LSF), and analytical hillshade. 

Soil classes were obtained from the Czech soil in-
formation system PUGIS at the resolution 1 : 250 000 
(Kozák et al. 1996). The individual classes were 
grouped into 13 groups (see Table 3). While some 
soil classes were grouped to larger sets as they are less 

represented in forests (like Chernozems, Phaeozems 
and Vertisols), or have similar properties (like Luvisols 
and Retisols), the most abundant Cambisols forming 
in total more than 50% of the country were divided 
into 3 subclasses (mostly Eutric, Dystric and Arenic 
Cambisols; Figure 1C). Mean annual precipitation 
and temperatures were obtained from the database 
WorldClim.org at resolution 1 km (Fick & Hijmans 
2017). Land cover/land use categories, particularly 
forest types (deciduous/mixed/coniferous) were 
obtained from the database CORINE Land Cover 
2018 (EEA 2018) at resolution of 100 m (Figure 1B). 
Forest typology (Viewegh et al. 2003) information on 
stands (forest vegetation zones – FVZ, and edaphic 
series) were obtained from the map of forest typol-
ogy at scale 1 : 10 000 (ÚHÚL 2019).

Model selection, calibration and validation. 
Several model types were tested for SOC stock pre-
diction, namely artificial neural networks, boosted 
regression trees, random forests (RF), and multivari-
ate adaptive regression splines. Based on the results, 

Figure 1. Map of the Czech Republic with digital elevation model (DEM) (A), forest types (B), combined soil classes (C) 
and sampling points in the natural forest areas (D)
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and taking into account its common utilization, 
robustness to model overfitting and intercorrela-
tion of predictors, and its ability to quantify relative 
predictor importance, the method of random forests 
(Breiman 2001) was chosen. 70% of data were used 
for model calibration, 30% for model validation. 
Index of determination (R2) and root mean square 
error (RMSE) of validation were used for model 
performance evaluation.

RESULTS AND DISCUSSION

General data description and predictor selection. 
The calculated SOC values in the depth 0–30 cm 
ranging from 0.07 to 38.59 kg/m2, with a mean of 
10.30 kg/m2 (Table 1) correspond to values compiled 
by Lal (2005) for temperate forests, as well as those 
reported for Germany and other Central European 
countries (Wiesmeier et al. 2012), Slovakia (Priwitzer 
et al. 2009), Austria (Baumgarten et al. 2021), Spain 
(Calvo de Anta et al. 2020), or EU (De Vos et al. 2015). 
Prietzel and Christophel (2014) found slightly lower 
values in mineral topsoils in German Alps, which 
may be caused by higher elevations and consequently 
higher proportion of SOC in forest floor, and by the 
rock fragments that were not taken into account in 
our study. Lower SOC stock values were found also 
in Russian forests (Osipov et al. 2021) or in Hesse, 
Germany (Heitkamp et al. 2021). 

Correlation analysis showed that SOC stocks are 
positively correlated with altitude (r = 0.438 ; Table 2), 
forest vegetation zones (0.413) and mean annual 
precipitation (0.347), and negatively correlated with 
average annual temperature (–0.425). An increase of 
SOC stocks with increasing altitudes was reported 
also by Bojko and Kabala (2017), but only to the 
altitude of 1 000 m a.s.l. Above this level, the SOC 
stocks started to drop again. Decreasing SOC stocks 
with increasing altitudes above 900 m a.s.l. were 
found also by Tungalag et al. (2020) in Mongolia. 
Weak correlation of the other predictors with SOC 
stock does not necessarily mean that there are no 
relationships; there can be some, but not linear.

The correlation analysis showed also mutual re-
lationships between the predictors. Thanks to the 
large dataset, even weak relationships are significant. 
Though RF model is not too sensitive to interrela-
tions of predictors, we removed from further model 
calibration the predictors strongly correlated with 
other predictors to avoid redundant information 
in the model input. Finally, only seven continuous 
auxiliary variables were retained: annual precipita-
tion, analytical hillshade, LS factor, catchment area, 
profile curvature, convergence index, and channel 
network distance. Three categorical ones were added: 
combined soil classes, edaphic series indicating 
trophic conditions and thus indirectly reflecting soil 
and geological conditions, and forest type. These ten 
predictors were used in all further models and their 
relative importance was evaluated.

SOC stocks prediction in natural forest areas. 
Separate models for SOC stock prediction were de-
veloped for individual NFA if the number of sampling 
points was sufficient, or for groups of two or a few 
neighbouring NFA that were similar. The NFA can 
correspond to the soil-landscape systems described 
by Mulder et al. (2015) who concluded that these 
systems have homogeneous conditions with respect 
to the combination of SOC controlling factors. This 
may explain why the prediction in some of these 
NFA was more successful than the groups defined by 
altitude ranges as shown further, or than the whole 
national model; the highest R2 was 0.564, the lowest 
RMSE 2.31 kg/m2. However, prediction accuracy for 
some other NFA was rather poor (minimum R2 0.001, 
highest RMSE 4.53 kg/m2). Similar results were re-
ported by Hounkpatin et al. (2021) after compari-
son of national model with local (regional) models. 
Though the prediction accuracy generally improves 
(R2 increases and RMSE decreases) with increasing 

Table 1. Basic statistical parameters of soil organic carbon 
(SOC) stock dataset (in kg/m2, layer 0–30 cm)

Parameter SOC stock
Count 7 338
Mean 10.30
Median 10.05
Geometric mean 9.06
Variance 22.04
SD 4.69
CV (%) 45.59
Standard error 0.05
Minimum 0.07
Maximum 38.59
Range 38.52
Lower quartile 6.53
Upper quartile 13.65
Skewness 0.33
Kurtosis –0.33

SD – standard deviation; CV – coefficient of variation
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size of the dataset (Figure 2), there are large datasets 
with poor models, and, in contrast, small datasets 
with good prediction accuracy. Moreover, though 
there are different combinations of important pre-
dictors for lower NFA and higher NFA, there is not 
a consistent trend of a better model performance in 
any altitude group of NFA. To analyse the different 
combination of important predictors at different 
altitudes, and to avoid criticism for different size of 
the groups, we divided the whole national dataset to 
four equal groups according to altitudes.

SOC stocks prediction in different altitude 
ranges. Figure 3 shows that the relative importance 
of predictors differs between different altitudes. At 
the first group with the lowest altitudes, there is the 
strongest effect of edaphic series, followed by com-
bined soil classes, catchment area, annual precipita-
tion, and analytical hillshade. Edaphic series indicate 
the trophic state of the stands, which definitely has 
a strong effect on SOC accumulation. The effect of 
soil classes is important because there is a strong 
variation of soil types in group 1, as it is shown by 
higher level of pedodiversity (Vacek et al. 2020), and 
also there are significant differences in SOC stock 
between soil types as confirmed by analysis of vari-
ance (ANOVA, Table 3). The highest stocks are in 
Fluvisols, which corresponds to the general features 
of this class, and in Calcareous Leptosols (mainly 

Rendzinas), where soil organic matter is stabilized by 
carbonates. However, Ostrowska et al. (2010) stated 
that the SOC accumulation in the profile is to a greater 
extent affected by the site type and stand age than 
by the soil type. In contrast, rather low importance 
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Figure 2. Relationship between model perfor-
mance measures (R2 and RMSE of validation) 
and the number of validation sites for regional 
models on individual NFA or groups of several 
neighbouring NFA
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was found at low altitudes for most relief-related 
predictors. Tziachris et al. (2019) also reported that 
terrain-based covariates have the least importance 
in flatness area. Only analytical hillshade, which is 
a terrain parameter, but with a strong relationship 
to the extent of solar radiation reaching the stand, 
has similar importance in all the altitude groups, as 
the sunlight undoubtedly influences organic matter 
production, decomposition and accumulation.

In group 2, the biggest importance was achieved 
for channel network distance, followed by other ter-
rain characteristics like LS factor, catchment area or 

profile curvature. The importance of forest type is 
rather low, as this group is dominated by coniferous 
forests and the difference between broadleaved and 
mixed forests is not significant. The low importance 
of soil classes is probably caused by the dominance 
of Cambisols in this group (reflected by the lowest 
pedodiversity), and even if there are three sets of 
Cambisols distinguished, they do not differ much 
in SOC stocks.

The higher altitudes, groups 3 and 4, have gener-
ally even more heterogenous relief, and therefore 
the importance of relief-related predictors is rather 

Table 3. Basic characteristics of four altitude classes and mean soil organic carbon (SOC) stocks in the layer 0–30 cm 
(in kg/m2) in separate soil class and forest type subsets; number of sampling points in each subset is given in parentheses

Group 1 Group 2 Group 3 Group 4
Altitude range (m a.s.l.) 145–421 421–550 550–748 748–1479
Mean annual temperature range (°C) 2.7–9.5 2.6–9.5 2.9–8.9 1.3–8.5
Annual precipitation range (mm) 470–1157 494–1233 494–1175 519–1318
Mean C stock 8.48 (1 836) 8.54 (1 836) 10.44 (1 836) 13.73 (1 836)
Combined soil classes
Chernozems, Phaeozems, Vertisols 9.16 (44)bc – – –
Fluvisols 11.77 (91)e – – –
Cambisols Eutric 8.40 (349)abc 9.59 (300)d 11.87 (284)cd 13.80 (146)bc

Cambisols Dystric 7.87 (557)a 8.42 (1 163)bc 9.78 (1 100)b 12.93 (281)a

Cambisols Arenic 8.33 (312)ac 9.04 (85)cd 10.19 (21)abc –
Calcaric Leptosols 11.27 (37)de 12.87 (8)e – –
Luvisols, Retisols 8.02 (272)ac 7.39 (56)ab 8.89 (1)abcde 15.20 (2)abcd

Histosols 5.66 (3)abc 7.25 (9)abcd 10.78 (13)abcd 12.40 (149)a

Entic Podzols – 10.80 (11)cde 12.48 (218)de 13.84 (664)b

Podzols – – 13.55 (26)e 14.31 (575)c

Stagnosols 9.15 (151)b 7.31 (189)a 9.03 (129)a 18.26 (7)d

Gleysols 9.01 (1)abcde 9.35 (12)abcde 9.88 (44)ab 11.77 (12)ab

Technosols 9.54 (19)abcd 12.42 (3)cde – –
F ratio 9.65 6.65 19.22 7.28
P < 0.001 < 0.001 < 0.001 < 0.001
Shannon index of pedodiversity (relative) 1.846 (0.780) 1.192 (0.518) 1.275 (0.580) 1.485 (0.714)
Forest types
Coniferous 7.61 (668)a 8.10 (1 172)a 10.04 (1 318)a 13.69 (1 476)a 
Mixed 8.20 (303)b 8.99 (269)b 11.04 (264)b 13.91 (230)a

Deciduous 9.27 (859)c 9.57 (391)b 11.85 (254)c 13.93 (130)a

F ratio 29.96 20.61 23.54 0.44
P < 0.001 < 0.001 < 0.001 0.645
Prediction results (validation subset)
R2 0.140 0.207 0.240 0.093
RMSE 3.96 3.62 3.71 3.76

Identical letters in each column indicate homogeneous groups according to ANOVA at P ≤ 0.05; RMSE − root mean square error
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high. Similarly, Ellili et al. (2019) found that slope 
and elevation are the most important covariates for 
predicting SOC. Soil classes are very important pre-
dictor in group 3 as there are Cambisols and Podzols 
that differ in SOC stocks. Group 4 is dominated by 
Podzols and therefore the importance of soil classes 
as predictor is again smaller. The highest SOC stocks 
at higher altitudes are in Podzols which corresponds 
to results reported by Bojko and Kabala (2017), and 
in Stagnosols where water saturation reduces min-
eralization process. The importance of forest type 
is still rather small, as the forests are dominated by 
conifers, and moreover, in group 4 the SOC stock in 
mineral topsoil under broadleaved and mixed forests 
does not differ significantly from coniferous forests.

General discussion. The validation results of the 
models were mostly weak, with quite low R2 values. 
Similarly, Yamashita et al. (2022) obtained R2 val-
ue of 0.38 in spatial prediction of SOC stocks in 
forested areas of Japan. Even lower R2 values were 
obtained by Ottoy et al. (2017), Hounkpatin et al. 
(2021), Nussbaum et al. (2014), Baltensweiler et al. 
(2021) and Hoffmann et al. (2014). The predictions 
overestimated low values and underestimated high 
values, creating thus much narrower range of values. 
Similar result was obtained for Swedish forest soils 
by Hounkpatin et al. (2021). Much better prediction 
accuracy was obtained by Li et al. (2021) when us-
ing remote sensing indices as additional predictors. 
Another potential source of auxiliary information for 
SOC prediction can be found in soil spectroscopy 
(Gholizadeh et al. 2021). Using some covariates in 
a more detailed resolution can possibly improve the 
prediction. However, more detailed environmental 
covariates do not need necessarily lead to more ac-
curate soil maps (Samuel-Rosa et al. 2015). An im-
portant part of the uncertainty in the models could 
have been introduced by combination of data from 
different surveys using different sampling designs, 
methods and approaches, by recalculation of the 
data to unified depth, and by uncertainty in bulk 
density estimation. Potential sources of errors and 
uncertainties in the assessment of forest SOC stocks 
from sample to continental scale are clearly reviewed 
and summarized by Vanguelova et al. (2016).

The importance of soil classes depends on the 
heterogeneity of soil cover (described for example 
by Shannon’s index of pedodiversity), and also on 
the significance of difference between soil classes 
in SOC stocks. Surprisingly, the SOC stocks in His-
tosols were among the lowest. However, there are 

just a few sites with Histosols particularly in the 
first three altitude groups, so that it cannot be con-
sidered significant, either. It indicates rather some 
inconsistencies or errors in the database, in spite of 
numerous checks applied. 

SOC stock in the depth of 0–30 cm is lower un-
der coniferous (mainly spruce) forests than under 
broadleaved and mixed forests (Table 3); at lower 
altitudes this difference is significant. However, as 
the coniferous forests have usually thicker O horizons 
and larger SOC amounts are retained in the surface 
organic horizons (Kjønaas et al. 2021), the total SOC 
stock in the whole profile is generally bigger under 
coniferous forests than under broadleaved ones (Boj-
ko & Kabala 2017; Nitsch et al. 2018). Nevertheless, 
Cremer et al. (2016) reported higher SOC stocks 
under coniferous forests even in the mineral topsoil. 
The dominance of coniferous forests, particularly at 
higher altitudes, and very similar SOC stock values 
in all forest types make forest type a less important 
predictor. A more detailed description of forest spe-
cies composition might improve the prediction. The 
effect of climate on building SOC stocks was shown 
e.g. by Rial et al. (2017), Černý et al. (2020), or Calvo 
de Anta et al. (2020).

CONCLUSION

The study showed that the importance of envi-
ronmental predictors in the models for SOC stock 
prediction can strongly differ between regions and 
altitudes. At lower altitudes, edaphic series and soil 
classes are strong predictors, while at higher altitudes 
the predictors related to topography become more 
important. The importance of soil classes depends 
on the pedodiversity level and on the difference in 
SOC stock between the soil classes distinguished. The 
contribution of forest types as predictor is limited 
when one type dominates. Collection and selection 
of influential covariates is a very important part of 
digital mapping of soil properties. It was found that 
better prediction results can be obtained in smaller, 
but consistent regions, like in some natural forest 
areas; however, in some NFA the models failed. It 
was also shown than even very exhaustive datasets 
used for modelling do not ensure highly accurate 
prediction. Data harmonization, transformation, 
standardization and recalculation bring additional 
uncertainty and error that are projected in developed 
prediction models and model estimates. Neverthe-
less, in spite of the uncertainties of the models, the 
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prediction shows well the general trends and factors 
of SOC stock distribution, at least at the national 
scale (Figure 4).
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