Soil and Water Research, 17, 2022 (2): 69-79 Original Paper

https://doi.org/10.17221/4/2022-SWR

Predictors for digital mapping of forest soil organic
carbon stocks in different types of landscape

LuBoS Bortivka'* RApIM VASAT!, ViT SRAMEK?, KATERINA NEUDERTOVA HELLEBRANDOVA?,
VERA FADRHONSOVA?, MILAN SANKA®, LENKA Paviii’, ONDRE] SANKA®, OLDRICH VACEK),
KAREL NEMECEK', SHAHIN NoZARI', VINCENT YAW OPPONG SARKODIE'

!Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources,
Czech University of Life Sciences Prague, Prague, Czech Republic

2Forestry and Game Management Research Institute, Jilovisté-Strnady, Czech Republic

3RECETOX, Masaryk University, Brno, Czech Republic

*Corresponding author: boruvka@af.czu.cz

Citation: Bortivka L., Vasit R., Sramek V., Neudertova Hellebrandova K., Fadrhonsova V., Saitka M., Pavli L., Satika O., Vacek O.,
Némecek K., Nozari S., Oppong Sarkodie V.Y. (2022): Predictors for digital mapping of forest soil organic carbon stocks in differ-
ent types of landscape. Soil & Water Res., 17: 69-79.

Abstract: Forest soils have a high potential to store carbon and thus mitigate climate change. The information on spatial
distribution of soil organic carbon (SOC) stocks is thus very important. This study aims to analyse the importance of
environmental predictors for forest SOC stock prediction at the regional and national scale in the Czech Republic. A big
database of forest soil data for more than 7 000 sites was compiled from several surveys. SOC stocks were calculated
from SOC content and bulk density for the topsoil mineral layer 0—30 cm. Spatial prediction models were developed
separately for individual natural forest areas and for four subsets with different altitude range, using random forest
method. The importance of environmental predictors in the models strongly differs between regions and altitudes.
At lower altitudes, forest edaphic series and soil classes are strong predictors, while at higher altitudes the predictors
related to topography become more important. The importance of soil classes depends on the pedodiversity level and
on the difference in SOC stock between the classes. The contribution of forest types as predictors is limited when one
(mostly coniferous) type dominates. Better prediction results can be obtained in smaller, but consistent regions, like
some natural forest areas.

Keywords: carbon stocks; digital soil mapping; environmental covariates; random forests; spatial distribution; terrain
attributes

The total forest ecosystem carbon (C) stock is large
and in dynamic equilibrium with its environment (Lal
2005). There is a high potential for C sequestration
and forest soils can thus contribute significantly to
climate change mitigation. The ratio of C storage
between tree biomass and soil depends on climate.
At colder climate, lower C amounts are incorporated
in tree biomass, but the soil organic carbon (SOC)
stocks in soil are increased due to slower decompo-
sition (Wen & He 2016). As the built-up of organic

matter is a long-term process, forest continuity is
an important factor of the SOC stocks in forest soils
(Nitsch et al. 2018), as well as forest age (Jonard et
al. 2017). Recovery of SOC stocks after forest soil
disturbance can take decades (Dobor et al. 2018).
Factors influencing SOC amount in forest soils
include (Lal 2005): climatic factors, topography, soil
characteristics, natural disturbance, and anthropo-
genic factors (forest management, afforestation, and
deforestation). Chuman et al. (2021) concluded that
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elevation (reflecting temperatures and precipitation
levels) belongs to the most important factors control-
ling SOC pools in Podzols and Cambisols, together
with legacy acid deposition of S and N compounds.
The anthropogenic influence is particularly pro-
nounced in forest floor and mineral topsoil.

The information on SOC stock spatial distribution
and the influencing factors is important for the assess-
ment of forest ecosystem functioning, soil ecosystem
services, soil fertility, as well as a support for decision
making in forest and environmental management.
Digital soil mapping (DSM) provides a useful and ef-
ficient tool for the description and assessment of soil
properties spatial distribution. General framework of
DSM as the quantitative prediction of soil properties
or classes using soil information and environmental
covariates (scorpan model) was formalised by McBrat-
ney et al. (2003). Digital mapping of SOC contents
or stocks is one of the most frequent applications of
DSM (e.g. Lamichhane et al. 2019). Various prediction
models are used, and various sets of covariates (pre-
dictors) are tested. Miller et al. (2015) tested a pool
of 412 potential predictors and found that models
with limited predictor pools can substitute other
predictors to compensate for the missing variables.

Random forests (RF, Breiman 2001) is one of the
most often used prediction methods in DSM (e.g. Cal-
vo de Anta et al. 2020; Yamashita et al. 2022). However,
Were et al. (2015) found that RF overestimated SOC
stocks compared to models based on support vector
regression and artificial neural networks. Martin
et al. (2014) found that robust geostatistical model-
ling of residuals from tree-based models improved
the prediction accuracy significantly when a limited
number of predictors were included.

Many studies on digital mapping of SOC stocks
focus on mineral topsoil 0-30 cm as there is usually
the highest amount of SOC stored (e.g. Wiesmeier
et al. 2012; Minasny et al. 2013; Yamashita et al.
2022). According to De Vos et al. (2015), the mineral
layer 0—30 cm contains approximately 55—-65% of the
total SOC stock in forest soil profiles.

Various surveys of forest SOC content have been
performed and various legacy data are available.
However, different sampling designs, protocols and
depth, different analytical methods, and data aging
make the combination of data from different sources
difficult and challenging (Bortivka et al. 2018; Bai &
Fernandez 2020).

The aim of this study was to analyse the importance
of environmental predictors for forest SOC stock
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prediction at the regional and national scale in the
Czech Republic and to compare relative importance
of the predictors in contrasting subsets of the na-
tional forest soil database compiled from several
large-scale soil surveys.

MATERIAL AND METHODS

Study area and soil data. This study is done on
the whole forested area of the Czech Republic, be-
longing to the temperate forest zone. The country
has an elevation ranging from 115 to 1 602 m a.s.l.
Mean annual temperatures are in the range from
1 to 10 °C, with mean annual precipitation ranging
between 400 and 1 400 mm. Forests cover 26 551 km?,
forming 34.2% of the total country area. The Czech
Republic is divided into 41 natural forest areas (NFA,
http://www.uhul.cz/what-we-do/regional-plans-of-
forest-development). These spatially compact areas
are rather homogeneous territories defined on the
basis of geological, climatic, orographic and phyto-
geographical conditions.

A database of forest soil data from the years 2000 to
2020 was compiled from several resources: (i) Na-
tional Forest Inventory (NFI) done by the Forest
Management Institute (FMI, Forest Management
Institute 2007); (i) Data from permanent typologi-
cal areas collected also by the FMI; (iii) Forest Soil
Monitoring (FSM) done by the Central Institute for
Supervising and Testing in Agriculture (Fiala et al.
2013); (iv) Data originating from the international
projects ICP Forest and BioSoil (Lorenz & Becher
2012; Sramek et al. 2013). As the surveys used dif-
ferent methodology and different sampling depths
or horizons, the data were recalculated to the top-
soil mineral layer 0—30 cm using weighted average.
SOC content was mostly determined by oxidimetric
method; comparability of other methods used in the
surveys was tested. SOC stocks were calculated from
the SOC content and bulk density (BD). Where the BD
was not available, an estimate of BD was calculated
using the model by Honeysett and Ratkowsky (1989):

BD = 1/(0.564 + 0.0556 x OM) (g/cm?)

where:
OM (organic matter) = 1.724 x SOC (%).

Rock fragments were not taken into account as
this information was not available on all sites and,
moreover, the accuracy of rock fragment content
is generally low. In total, SOC stock values at the
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0-30 cm depth were collected from 7 338 forest stands
all over the country, though the spatial distribution
is not even and there are some gaps (see Figure 1D).

Potential covariates. Terrain data were extracted
from the digital elevation model (DEM) ArcCR®500
with resolution 200 m (ARCDATA PRAHA, ZU, CSU,
2016; Figure 1A). Secondary terrain characteristics
were calculated using Terrain Analysis Toolbox in
SAGA GIS 2.1.4 (Conrad et al. 2015). The follow-
ing terrain attributes were determined: elevation
(m a.s.l.), slope, aspect (cos and sin), planar and
profile curvatures, convergence index, catchment
area, valley depth, relative slope position (RSP),
channel network base level (CNBL), channel network
distance (CND), topographic wetness index (T WI),
LS factor (LSF), and analytical hillshade.

Soil classes were obtained from the Czech soil in-
formation system PUGIS at the resolution 1:250 000
(Kozdk et al. 1996). The individual classes were
grouped into 13 groups (see Table 3). While some
soil classes were grouped to larger sets as they are less
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represented in forests (like Chernozems, Phaeozems
and Vertisols), or have similar properties (like Luvisols
and Retisols), the most abundant Cambisols forming
in total more than 50% of the country were divided
into 3 subclasses (mostly Eutric, Dystric and Arenic
Cambisols; Figure 1C). Mean annual precipitation
and temperatures were obtained from the database
WorldClim.org at resolution 1 km (Fick & Hijmans
2017). Land cover/land use categories, particularly
forest types (deciduous/mixed/coniferous) were
obtained from the database CORINE Land Cover
2018 (EEA 2018) at resolution of 100 m (Figure 1B).
Forest typology (Viewegh et al. 2003) information on
stands (forest vegetation zones — FVZ, and edaphic
series) were obtained from the map of forest typol-
ogy at scale 1:10 000 (UHUL 2019).

Model selection, calibration and validation.
Several model types were tested for SOC stock pre-
diction, namely artificial neural networks, boosted
regression trees, random forests (RF), and multivari-
ate adaptive regression splines. Based on the results,

CORINE

- ‘Coniferous forest -

Broad-leaved forests *
[ Mixed forests
Transitional woodlands/shrubs
Il Wetlands, moors, heathlands
Bl Water bodies

0 25 50 100 km

(D)

« NFI
+ Typology
+ Forest soil monitoring

+ ICP Forest, BioSoil 0 25 50

100 km

Figure 1. Map of the Czech Republic with digital elevation model (DEM) (A), forest types (B), combined soil classes (C)

and sampling points in the natural forest areas (D)
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and taking into account its common utilization,
robustness to model overfitting and intercorrela-
tion of predictors, and its ability to quantify relative
predictor importance, the method of random forests
(Breiman 2001) was chosen. 70% of data were used
for model calibration, 30% for model validation.
Index of determination (R?) and root mean square
error (RMSE) of validation were used for model
performance evaluation.

RESULTS AND DISCUSSION

General data description and predictor selection.
The calculated SOC values in the depth 0-30 cm
ranging from 0.07 to 38.59 kg/m? with a mean of
10.30 kg/m? (Table 1) correspond to values compiled
by Lal (2005) for temperate forests, as well as those
reported for Germany and other Central European
countries (Wiesmeier et al. 2012), Slovakia (Priwitzer
et al. 2009), Austria (Baumgarten et al. 2021), Spain
(Calvo de Anta et al. 2020), or EU (De Vos et al. 2015).
Prietzel and Christophel (2014) found slightly lower
values in mineral topsoils in German Alps, which
may be caused by higher elevations and consequently
higher proportion of SOC in forest floor, and by the
rock fragments that were not taken into account in
our study. Lower SOC stock values were found also
in Russian forests (Osipov et al. 2021) or in Hesse,
Germany (Heitkamp et al. 2021).

Table 1. Basic statistical parameters of soil organic carbon
(SOC) stock dataset (in kg/m?, layer 0—30 cm)

Parameter SOC stock
Count 7 338
Mean 10.30
Median 10.05
Geometric mean 9.06
Variance 22.04
SD 4.69
CV (%) 45.59
Standard error 0.05
Minimum 0.07
Maximum 38.59
Range 38.52
Lower quartile 6.53
Upper quartile 13.65
Skewness 0.33
Kurtosis -0.33

SD — standard deviation; CV — coefficient of variation
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Correlation analysis showed that SOC stocks are
positively correlated with altitude (r = 0.438 ; Table 2),
forest vegetation zones (0.413) and mean annual
precipitation (0.347), and negatively correlated with
average annual temperature (-0.425). An increase of
SOC stocks with increasing altitudes was reported
also by Bojko and Kabala (2017), but only to the
altitude of 1 000 m a.s.l. Above this level, the SOC
stocks started to drop again. Decreasing SOC stocks
with increasing altitudes above 900 m a.s.l. were
found also by Tungalag et al. (2020) in Mongolia.
Weak correlation of the other predictors with SOC
stock does not necessarily mean that there are no
relationships; there can be some, but not linear.

The correlation analysis showed also mutual re-
lationships between the predictors. Thanks to the
large dataset, even weak relationships are significant.
Though RF model is not too sensitive to interrela-
tions of predictors, we removed from further model
calibration the predictors strongly correlated with
other predictors to avoid redundant information
in the model input. Finally, only seven continuous
auxiliary variables were retained: annual precipita-
tion, analytical hillshade, LS factor, catchment area,
profile curvature, convergence index, and channel
network distance. Three categorical ones were added:
combined soil classes, edaphic series indicating
trophic conditions and thus indirectly reflecting soil
and geological conditions, and forest type. These ten
predictors were used in all further models and their
relative importance was evaluated.

SOC stocks prediction in natural forest areas.
Separate models for SOC stock prediction were de-
veloped for individual NFA if the number of sampling
points was sufficient, or for groups of two or a few
neighbouring NFA that were similar. The NFA can
correspond to the soil-landscape systems described
by Mulder et al. (2015) who concluded that these
systems have homogeneous conditions with respect
to the combination of SOC controlling factors. This
may explain why the prediction in some of these
NFA was more successful than the groups defined by
altitude ranges as shown further, or than the whole
national model; the highest R? was 0.564, the lowest
RMSE 2.31 kg/m?. However, prediction accuracy for
some other NFA was rather poor (minimum R?0.001,
highest RMSE 4.53 kg/m?). Similar results were re-
ported by Hounkpatin et al. (2021) after compari-
son of national model with local (regional) models.
Though the prediction accuracy generally improves
(R?* increases and RMSE decreases) with increasing
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size of the dataset (Figure 2), there are large datasets
with poor models, and, in contrast, small datasets
with good prediction accuracy. Moreover, though
there are different combinations of important pre-
dictors for lower NFA and higher NFA, there is not
a consistent trend of a better model performance in
any altitude group of NFA. To analyse the different
combination of important predictors at different
altitudes, and to avoid criticism for different size of
the groups, we divided the whole national dataset to
four equal groups according to altitudes.

SOC stocks prediction in different altitude
ranges. Figure 3 shows that the relative importance
of predictors differs between different altitudes. At
the first group with the lowest altitudes, there is the
strongest effect of edaphic series, followed by com-
bined soil classes, catchment area, annual precipita-
tion, and analytical hillshade. Edaphic series indicate
the trophic state of the stands, which definitely has
a strong effect on SOC accumulation. The effect of
soil classes is important because there is a strong
variation of soil types in group 1, as it is shown by
higher level of pedodiversity (Vacek et al. 2020), and
also there are significant differences in SOC stock
between soil types as confirmed by analysis of vari-
ance (ANOVA, Table 3). The highest stocks are in
Fluvisols, which corresponds to the general features
of this class, and in Calcareous Leptosols (mainly
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Rendzinas), where soil organic matter is stabilized by
carbonates. However, Ostrowska et al. (2010) stated
that the SOC accumulation in the profile is to a greater
extent affected by the site type and stand age than
by the soil type. In contrast, rather low importance

Combined soil class

Profile curvature

LS factor

Channel network distance

Forest type

Edaphic series

Convergence index

Catchment area

Annual precipitation

Analytical hillshade

Group 4 g Group 3 Group2 g Group 1

Figure 3. Relative importance of predictors for four altitude
groups of equal size according to the altitude
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was found at low altitudes for most relief-related
predictors. Tziachris et al. (2019) also reported that
terrain-based covariates have the least importance
in flatness area. Only analytical hillshade, which is
a terrain parameter, but with a strong relationship
to the extent of solar radiation reaching the stand,
has similar importance in all the altitude groups, as
the sunlight undoubtedly influences organic matter
production, decomposition and accumulation.

In group 2, the biggest importance was achieved
for channel network distance, followed by other ter-
rain characteristics like LS factor, catchment area or

profile curvature. The importance of forest type is
rather low, as this group is dominated by coniferous
forests and the difference between broadleaved and
mixed forests is not significant. The low importance
of soil classes is probably caused by the dominance
of Cambisols in this group (reflected by the lowest
pedodiversity), and even if there are three sets of
Cambisols distinguished, they do not differ much
in SOC stocks.

The higher altitudes, groups 3 and 4, have gener-
ally even more heterogenous relief, and therefore
the importance of relief-related predictors is rather

Table 3. Basic characteristics of four altitude classes and mean soil organic carbon (SOC) stocks in the layer 0-30 cm

(in kg/m?) in separate soil class and forest type subsets; number of sampling points in each subset is given in parentheses

Group 1 Group 2 Group 3 Group 4
Altitude range (m a.s.l.) 145-421 421-550 550-748 748-1479
Mean annual temperature range (°C) 2.7-9.5 2.6-9.5 2.9-8.9 1.3-8.5
Annual precipitation range (mm) 470-1157 494-1233 494-1175 519-1318
Mean C stock 8.48 (1 836) 8.54 (1 836) 10.44 (1 836) 13.73 (1 836)
Combined soil classes
Chernozems, Phaeozems, Vertisols 9.16 (44)> - - -
Fluvisols 11.77 (91)¢ - -
Cambisols Eutric 8.40 (349)¢ 9.59 (300)d 11.87 (284)d 13.80 (146)>¢
Cambisols Dystric 7.87 (557) 8.42 (1163)> 9.78 (1 100)° 12.93 (281)?
Cambisols Arenic 8.33 (312)* 9.04 (85) 10.19 (21)%b¢ -
Calcaric Leptosols 11.27 (37)% 12.87 (8)¢ - -
Luvisols, Retisols 8.02 (272) 7.39 (56)2P 8.89 (1)2bede 15.20 (2)2bed
Histosols 5.66 (3)2¢ 7.25 (9)2bed 10.78 (13)2bed 12.40 (149)*
Entic Podzols - 10.80 (11)<de 12.48 (218)d 13.84 (664)°
Podzols - - 13.55 (26)° 14.31 (575)°
Stagnosols 9.15 (151)° 7.31 (189)? 9.03 (129)* 18.26 (7)4
Gleysols 9.01 (1)3bede 9.35 (12)bede 9.88 (44)? 11.77 (12)*®
Technosols 9.54. (19)2b<d 12.42 (3)<de - -
F ratio 9.65 6.65 19.22 7.28
P < 0.001 <0.001 <0.001 < 0.001
Shannon index of pedodiversity (relative) 1.846 (0.780) 1.192 (0.518) 1.275 (0.580) 1.485 (0.714)
Forest types
Coniferous 7.61 (668)* 8.10 (1172) 10.04 (1 318)? 13.69 (1 476)
Mixed 8.20 (303)P 8.99 (269)° 11.04 (264)° 13.91 (230)*
Deciduous 9.27 (859)° 9.57 (391)° 11.85 (254)° 13.93 (130)®
F ratio 29.96 20.61 23.54 0.44
p <0.001 <0.001 <0.001 0.645
Prediction results (validation subset)
R? 0.140 0.207 0.240 0.093
RMSE 3.96 3.62 3.71 3.76

Identical letters in each column indicate homogeneous groups according to ANOVA at P < 0.05; RMSE - root mean square error
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high. Similarly, Ellili et al. (2019) found that slope
and elevation are the most important covariates for
predicting SOC. Soil classes are very important pre-
dictor in group 3 as there are Cambisols and Podzols
that differ in SOC stocks. Group 4 is dominated by
Podzols and therefore the importance of soil classes
as predictor is again smaller. The highest SOC stocks
at higher altitudes are in Podzols which corresponds
to results reported by Bojko and Kabala (2017), and
in Stagnosols where water saturation reduces min-
eralization process. The importance of forest type
is still rather small, as the forests are dominated by
conifers, and moreover, in group 4 the SOC stock in
mineral topsoil under broadleaved and mixed forests
does not differ significantly from coniferous forests.

General discussion. The validation results of the
models were mostly weak, with quite low R?values.
Similarly, Yamashita et al. (2022) obtained R? val-
ue of 0.38 in spatial prediction of SOC stocks in
forested areas of Japan. Even lower R? values were
obtained by Ottoy et al. (2017), Hounkpatin et al.
(2021), Nussbaum et al. (2014), Baltensweiler et al.
(2021) and Hoffmann et al. (2014). The predictions
overestimated low values and underestimated high
values, creating thus much narrower range of values.
Similar result was obtained for Swedish forest soils
by Hounkpatin et al. (2021). Much better prediction
accuracy was obtained by Li et al. (2021) when us-
ing remote sensing indices as additional predictors.
Another potential source of auxiliary information for
SOC prediction can be found in soil spectroscopy
(Gholizadeh et al. 2021). Using some covariates in
a more detailed resolution can possibly improve the
prediction. However, more detailed environmental
covariates do not need necessarily lead to more ac-
curate soil maps (Samuel-Rosa et al. 2015). An im-
portant part of the uncertainty in the models could
have been introduced by combination of data from
different surveys using different sampling designs,
methods and approaches, by recalculation of the
data to unified depth, and by uncertainty in bulk
density estimation. Potential sources of errors and
uncertainties in the assessment of forest SOC stocks
from sample to continental scale are clearly reviewed
and summarized by Vanguelova et al. (2016).

The importance of soil classes depends on the
heterogeneity of soil cover (described for example
by Shannon’s index of pedodiversity), and also on
the significance of difference between soil classes
in SOC stocks. Surprisingly, the SOC stocks in His-
tosols were among the lowest. However, there are
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just a few sites with Histosols particularly in the
first three altitude groups, so that it cannot be con-
sidered significant, either. It indicates rather some
inconsistencies or errors in the database, in spite of
numerous checks applied.

SOC stock in the depth of 0-30 cm is lower un-
der coniferous (mainly spruce) forests than under
broadleaved and mixed forests (Table 3); at lower
altitudes this difference is significant. However, as
the coniferous forests have usually thicker O horizons
and larger SOC amounts are retained in the surface
organic horizons (Kjgnaas et al. 2021), the total SOC
stock in the whole profile is generally bigger under
coniferous forests than under broadleaved ones (Boj-
ko & Kabala 2017; Nitsch et al. 2018). Nevertheless,
Cremer et al. (2016) reported higher SOC stocks
under coniferous forests even in the mineral topsoil.
The dominance of coniferous forests, particularly at
higher altitudes, and very similar SOC stock values
in all forest types make forest type a less important
predictor. A more detailed description of forest spe-
cies composition might improve the prediction. The
effect of climate on building SOC stocks was shown
e.g. by Rial et al. (2017), Cerny et al. (2020), or Calvo
de Anta et al. (2020).

CONCLUSION

The study showed that the importance of envi-
ronmental predictors in the models for SOC stock
prediction can strongly differ between regions and
altitudes. At lower altitudes, edaphic series and soil
classes are strong predictors, while at higher altitudes
the predictors related to topography become more
important. The importance of soil classes depends
on the pedodiversity level and on the difference in
SOC stock between the soil classes distinguished. The
contribution of forest types as predictor is limited
when one type dominates. Collection and selection
of influential covariates is a very important part of
digital mapping of soil properties. It was found that
better prediction results can be obtained in smaller,
but consistent regions, like in some natural forest
areas; however, in some NFA the models failed. It
was also shown than even very exhaustive datasets
used for modelling do not ensure highly accurate
prediction. Data harmonization, transformation,
standardization and recalculation bring additional
uncertainty and error that are projected in developed
prediction models and model estimates. Neverthe-
less, in spite of the uncertainties of the models, the
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Figure 4. Predicted soil organic carbon (SOC) stock values for the mineral topsoil (0-30 cm) of forest soils using random

forest model (R? = 0.32, RMSE = 3.91 kg/m?)

The agricultural and other non-forest soils are masked by white colour; RMSE - root mean square error

prediction shows well the general trends and factors
of SOC stock distribution, at least at the national
scale (Figure 4).
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