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Abstract: The estimation of the level of the soil organic carbon (SOC) content plays an important role in assessing the
soil health state. Visible and Near Infrared Diffuse Reflectance Spectroscopy (Vis-NIR DRS) is a fast and cheap tool
for measuring the SOC. However, when this technology is applied on a larger area, the soil prediction accuracy dec-
reases due to the heterogeneity of the samples. In this paper, we first investigate the global model performance in the
LUCAS EU-wide topsoil database. Then, different clustering strategies were tested, including the k-means clustering
based on the principal component analysis (PCA) and hierarchical clustering, combined with the partial least squares
regression (PLSR) models, and a clustering based on a local PLSR approach. The best validation results were obtained
for the local PLSR approach with R?* = 0.75, root mean squared error of prediction (RMSEP) = 13.38 g/kg and ratio
of performance to interquartile range (RPIQ) = 2.846, but the algorithm running time was 30.05 s. Similar results were
obtained for the k-means clustering method with R* = 0.75, RMSEP = 14.61 g/kg and RPIQ = 2.844, at only 4.52 s. This
study demonstrates that the PLSR approach based on k-means clustering is able to achieve similar prediction accuracy
as the local PLSR approach, while significantly improving the algorithm speed. This provides the theoretical basis for
adapting the spectral soil model to the needs of real-time SOC quantification.
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Fundamental ecological services provided by soils
include carbon sequestration, energy security, and
food security (Kibblewhite et al. 2012). When it comes
to carbon sequestration, soils often provide greater
carbon storage capabilities to partially offset fuel
emissions and thus reduce the danger of global
warming (Conant et al. 2010). Soil organic carbon
is essential for sustaining soil quality and food pro-
duction, and its decline is one of the main threats
of soil degradation (Lal 2004). Determining the soil
organic carbon (SOC) content is a key step in assess-
ing soil condition (Sanchez et al. 2009). As a result,
there is an increasing demand to monitor the SOC
content and other soil parameters (Lal 2004). Un-
fortunately, the costly and time-consuming nature

of conventional soil sampling and analysis restricts
the monitoring of soil properties on a large scale
(Conant et al. 2010; Aradjo et al. 2014).

Visible (Vis, 400—700 nm) and Near-Infrared (NIR,
700-2 500 nm) diffuse reflectance spectroscopy (DRS)
was first applied to soil analyses in the 1980s and
was shown to hold potential for predicting the soil
SOC content and other properties (Dalal & Henry
1986; Viscarra Rossel et al. 2006). Therefore, diffuse
reflectance spectroscopy provides a good quan-
titative alternative to soil properties (Islam et al.
2003). Visible near-infrared spectroscopy has been
widely applied to detect heavy metal soil contamina-
tion, soil salinisation and water pollution due to its
advantages, such as cost-efficiency, ease of opera-
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tion, rapidity, minimal sample preparation and the
development of chemometrics (Davies 2005). Soil
spectroscopy is based on the assumption that ab-
sorption features in the visible range (400—700 nm)
may be brought on by electron transitions (Ben-
Dor et al. 1999). Another assumption is that the
concentration of a certain soil attribute is linearly
proportional to the combination of the absorption
features within the spectrum (Ben-Dor et al. 1999;
Bellon-Maurel & McBratney 2011). These absorption
features are attributed to overtones and combina-
tion bands of fundamental vibrations of some of the
molecules’ functional groups, such as the hydroxyl
groups (OH). Since the overtone and combination
bands of each functional group are located at specific
wavelengths of the spectrum, various materials can
be recognised (Ben-Dor et al. 1999).

The prediction of soil properties requires the crea-
tion of a spectral library that links the spectra with
the soil physical and chemistry data. Such a library
should be designed to represent the variability of soil
properties for the soil type of interest. Different math-
ematical modelling approaches are then used to infer
soil properties (Shepherd & Walsh 2002; Viscarra
Rossel & Behrens 2010; Stevens et al. 2013). In large
and complex datasets, the relationship between soil
properties and spectral data is highly non-linear and
spatially dependent (Stenberg et al. 2010; Stevens
et al. 2013). This usually leads to a decrease in the
prediction accuracy, as well as increasing variances
in the soil properties that finally produce larger
prediction errors (Stevens et al. 2013; Nocita et al.
2014; Ward et al. 2019).

Nevertheless, there is local stability in the spectral
variance associated with soil properties (Stevens et al.
2013). Thus, one possible approach for predicting soil
properties in a large-scale database is the use of lo-
cal regression (Nocita et al. 2014). Local regression
has been widely applied to estimate soil properties
in large-scale databases and has achieved promising
results. In contrast to other local algorithms, Ramirez-
Lopez et al. (2013) proposed a new algorithm for
retrieving a set of nearest neighbours using an opti-
mised principal component distance. This procedure
selects the optimal number of principal components
by considering the soil composition of the sample
(Ramirez-Lopez et al. 2013). Nocita et al. (2014) first
divided their cropland database into mineral and or-
ganic soils and obtained the best results for mineral
soils using the local partial least squares regression
(PLSR), which utilised a fixed number of nearest
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neighbours and set the PLS distance as a spectral
distance measure. In addition, they used the sand
content and geographic data as auxiliary distance
measures for the further improvement of the pre-
diction accuracy (Nocita et al. 2014). However, their
method required prior knowledge not only from the
spectra, but also from the additional SOC content,
sand content and chemical data. Ward et al. (2019)
used the exhaustive method to select the number
of clusters that achieved the best PLSR model valida-
tion results as the input of the k-means algorithm.
However, the process was time-consuming and lacks
any theoretical basis (Ward et al. 2019).

The main points of this study include the following:
(i) improving the performance of the SOC prediction
model by converting the highly skewed SOC content
to an approximately normal distribution through
natural logarithms; (ii) using hierarchical clustering
to determine the appropriate number of clusters,
thus reducing the modelling time; and (iii) using only
spectral data without using any geochemical soil in-
formation in building the SOC prediction model. The
objectives of this paper are to (i) investigate whether
spectral clustering has the potential to group large
soil spectral libraries and thus improve the predic-
tion accuracy compared to non-clustering-based
models, and (ii) whether spectral clustering can
achieve prediction accuracy similar to that of local
PLSR and reduce the modelling time.

MATERIAL AND METHODS

LUCAS soil database. This study is based on the
pan-European Land Use/Land Cover Area Frame Sur-
vey (LUCAS) 2015 topsoil database which is managed
by EUROSTAT together with the European Com-
mission’s Directorates-General for Environment and
the Joint Research Centre at Ispra, Italy (T6th et al.
2013; Orgiazzi et al. 2017; Jones et al. 2020; https://
esdac.jrc.ec.europa.eu). In 2015, the LUCAS survey
was carried out in all the EU-28 Member States (MS)
and included 21 859 top-soil samples (0-20 ¢cm) col-
lected on different land use types. In the countries
sampled in 2009 and 2012, 90% of the locations were
maintained while the remaining 10% of the points
were substituted by new sampling locations, including
points above 1 000 m in elevation, which were out
of the scope of the LUCAS 2009 and LUCAS 2012
surveys. To ensure the comparability of the data,
all the survey teams followed a single soil sampling
protocol. The sampling protocol consisted of collect-
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ing a composite of five subsamples, the first of which
was collected at a selected location, while the other
four subsamples were collected at a distance of 2 m
along the main direction. All the soil samples were
air-dried in a drying chamber at a temperature of 40 °C
for an average of 3 days. The soil samples were crushed
and sieved, and fractions smaller than 2 mm were
retained for further analysis. The following proper-
ties were then analysed: the particle size distribution,
pH of H,O, pH of CaCl,, organic carbon, carbonate,
nitrogen, phosphorus, and potassium, cationic exchange
capacity (CEC), and visible-NIR diffuse reflectance.

After heating the soil to 900 °C, the total carbon
content was measured using a VarioMax CN Analyser
(Elemental Analysis, Germany) and the SOC was
obtained by subtracting the carbonate content (meas-
ured according to ISO 10693:1995) from the total
carbon amount. The Vis-NIR absorbance of the soil
was measured using a FOSS XDS Rapid Content
Analyser (FOSS NIR Systems Inc., Denmark), which
operates at the wavelength range of 400-2 500 nm
with a spectral resolution of 2 nm and a spectral data
interval of 0.5 nm. Each sample was placed on a 140 x
40 x 50 mm cuvette and scanned twice in both direc-
tions. The average spectrum of the two replicates was
calculated and any samples with absorbance repeat
standard deviations greater than 1% were removed.

In order to reduce the redundancy of the spectral
data and the number of model calculations, we resa-
mpled the spectral data interval to 2 nm. Similarly,
we selected 4 239 soil samples as the research ob-
jects, which were collected for the first time in the
LUCAS 2015 database.

Database pre-processing. In several studies, the
15t derivative led to the best modelling results (e.g.,
Stevens et al. 2013; Nocita et al. 2014). Thus, several
pre-processing techniques were applied: 1% derivative,
Savitzky-Golay smoothing with 2" order polynomial
and a window size of 20 data points which corre-
sponds to 40 nm (Savitzky & Golay 1964).

The distribution of the SOC content in the subset
studied in this paper is highly skewed (skewness = 4.072),
so we transformed it to approximately normally distrib-
uted values using the natural logarithm (new skewness
= 0.61). The dataset was then divided into subsets for
calibration (70%) and validation (30%) using the Kennard-
Stone algorithm (Kennard & Stone 1969), which selects
samples based on a distance metric to produce a typical
subset. The clustering and model calibration are only
based on the calibration subset, and the validation subset
is solely used to assess the model performance.

Methodological overview. In this study, we com-
pared three different modelling approaches (Figure 1):
(i) a PLSR approach was used based on the com-
plete database without clustering, called the refer-
ence model (Figure 1A). (ii) the k-means algorithm
based on principal component analysis (PCA) and
hierarchical clustering was used (Figure 1B), then
SOC predictions were performed on each spectral
cluster using PLSR; (iii) a local PLSR method was
used, where for each validation sample, a set of the
most similar calibration samples was selected based
on the distance metric for calibration of the inde-
pendent PLSR model (Figure 1C). For comparability
reasons, all the models are calibrated and validated
on the exact same subset of LUCAS.

Reference model without clustering using PLSR.
As an initial stage, the PLSR model for the SOC pre-
diction was built based on the spectral data of the
newly collected samples in the LUCAS 2015 database.
PLSR integrates the advantages of principal compo-
nent regression, a typical correlation analysis and
multilinear linear regression, which has been used
in many disciplines such as social sciences, bioinfor-
matics and economics (Wold et al. 2001). PLSR uses
a few factors and orthogonal factors, called latent
variables (LVs) as new predictor variables of the
response Y. The number of LVs is unknown and has
a significant effect on the prediction results of the
model. In this paper, a combination of two com-
monly used methods was chosen to achieve good
model accuracy without over-fitting. (i) We used
10-fold cross-validation to estimate the root mean
square error (RMSE) for different numbers of LVs

it

LUCAS New
4| Spectral pre-processed |
A B C
| PCA | | Spectra distance |

| Hierarchical clustering |

| PLSR reference | | k-means + PLSR | | Local PLSR |

SOC prediction

Figure 1. Overview of the general processing structure

PLSR - partial least squares regression; PCA — principal
component analysis; SOC - soil organic carbon
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and chose the smallest number of LVs within one
standard deviation of the minimum RMSE (Stevens
et al. 2013). (ii) We used the adjusted coefficient
of determination (adj. R?, see Equation (1)) which
takes the number of components used in a model
into account.

adj. R*=1-(1-R)x(n-1)/(n-k-1) (1)

where:
n — the number of samples;
k — the number of LVs.

Hierarchical clustering and k-means clustering.
As shown in Figure 1B, we first divided the spectral
data into several different clusters using the cluster-
ing algorithms, and then built the PLSR model for
each spectral cluster. In order to eliminate noise,
reduce multicollinearity and improve the computa-
tional speed, a principal component analysis based
on spectral variance was applied to the pre-processed
spectral data before the hierarchical clustering and
k-means clustering in this study. The PCA method
was used only for the clustering process. The k-means
algorithm demands the number of clusters as an
input, and here we used the hierarchical clustering
algorithm to obtain the appropriate number of clus-
ters instead of the exhaustive method commonly
adopted in previous studies.

The hierarchical agglomerative clustering al-
gorithm is a hierarchical approach that gradually
merges existing clusters until the desired num-
ber of clusters is reached (Wishart 1969). We used
Ward association as the association criterion and
Euclidean distance as the distance metric. Finally,
we determined the number of clusters based on the
dendrogram generated by the hierarchical clustering
algorithm, which is then used as the input to the
k-means algorithm.

k-means starts with randomly selected initial clus-
ter centres and assigns the closest samples to these
centres. Based on these clusters, it calculates new
cluster centres and reassigns all the samples. This
process continues until the set number of clusters
is reached. The following steps are applied to the
set of clusters: for each cluster, the individual PLSR
models are calibrated in the calibration dataset of the
pre-processed spectra. As the clustering process
was based exclusively on the calibration subset,
each validation sample had to be assigned to one
of those clusters. To validate this clustering model-
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ling approach, a PLSR model was built based on the
clusters in the calibration set to which the validation
sample belonged, in order to predict the SOC content
of this validation sample.

Local partial least square regression. Locally
weighted PLSR models are the memory-based learn-
ing approaches and create a specific calibration set
for each sample to be predicted, which outperform
machine learning algorithms such as artificial neural
networks and decision trees (Ramirez-Lopez et al.
2013). The local PLSR selects the most similar set
of spectral samples for each validation sample in the
calibration set based on the similarity metric, and
builds an independent PLSR model for each valida-
tion sample based on this set of spectral samples
(Ward et al. 2020). As shown in Figure 1C, a basic
local PLSR approach can be described with the fol-
lowing pseudo-code:

1. Given a set of n reference samples

(Xr, Yr) = {xri, yr}"ic

and a set of m samples to predict

m .

(Xp, Yp) = {xpi, ypi}™i-1

where:

Xr, Yr — spectral data matrix and SOC content in the
calibration set, respectively;

Xp, Yp — spectral data matrix and SOC content in the
validation set, respectively.

2. for each sample to predict p;i =1, 2, ..., m do

. compute d;, the distance vector between Xr and xp;

4. find the most similar samples in Xr as the k ones
minimising d, i.e., the k-nearest neighbours

5. fit a PLSR model with the k nearest neighbours

6. choose the optimal model parameters for the
prediction of p;, e.g., appropriate number of LVs
for a PLSR model

7. predict the SOC content of sample p; and compute
the square error (yp; — yp;)*

8. end

9. evaluate the model performance using the root
mean square error (RMSE)

Model assessments. To assess the model accuracy,
the In-transformed SOC values (measured and pre-
dicted) were used for dimensionless measurements,
whereas for measurements with units (g/kg), the
original SOC values and back-transformed predicted
values were used. The coefficient of determina-
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tion (R?) (Equation (2)), the root mean squared error
of prediction (RMSEP, Equation (3)), the relative
RMSEP (rRMSEP) (Equation (4)), the ratio of per-
formance to deviation (RPD) (Equation (5)) and the
ratio of performance to interquartile range (RPIQ,
Equation (6)) were used to evaluate and compare
the model performance:

R’ zl—i(ypi—yol‘)z /i(yo;’—}ot)z (2)
i=1 i=1

where:

yo; — the observed value of sample i;

ypi —the predicted value of sample i;

yo — the mean of the observed SOC value.

n

172
RMSEP = (Z(ypi - yot)2 / nj (3)

i=1

where:
n — the number of samples.

rRMSEP = 100 x RMSEP/yo (4)
RPD = SD(y0)/RMSEP (5)
where:

SD — the standard deviation.

RPIQ = IQ(yo)/RMSEP (6)

where:
IQ - the interquartile range.

The rRMSEP, RPD, and RPIQ are ways of nor-
malising the RMSE’s of the prediction to compare
calibration models and datasets where the measured
variables have different ranges or variances (Bellon-
Maurel & McBratney 2011).

In this paper, we applied Matlab 2018a to imple-
ment the PLSR model, cluster algorithms and local
PLSR model. Excel 2016 was applied for the spectral
data resampling and pre-processing.

RESULTS AND DISCUSSION

LUCAS database and pre-processing. We used
the samples that were first sampled in the LUCAS
2015 database as the study object, so the number
of samples was reduced to 4 239 values. Within
the selected LUCAS 2015 subset, the SOC content
ranges between 0.4 and 517.2 g/kg, with a mean value
of 46.42 g/kgand a standard deviation of 59.34 g/kg.
The percentage of clay ranges between 0 and 62%
and is 19.15% on average. The CaCO3 content var-
ies between 0 and 898 g/kg with a mean of 85.34 g
per kgand a standard deviation of 167.22 g/kg. The
SOC content and CaCOj3 content both showed high
standard deviations, indicating considerable vari-
ation among the soil samples. This variation may
have been caused by the fact that the soil samples
were gathered from various land cover and use types.
As shown in Table 1, the standard deviation of the
SOCin the LUCAS 2015 database was slightly higher
than the standard deviation of the SOC for the newly
sampled data, but the other statistical results were
similar. This indicates that the newly sampled soil
samples used in this paper are representative.

The spectra show a large variation in the absorbance
due to the influence of the SOC content and miner-
alogical composition (Figure 2). In the visible region
(400-700 nm), the difference in the reflectance for
higher SOC content classes is clearer than in the NIR
region (Baumgardner et al. 1986). While this was not
true for longer wavelengths, the darkest spectrum,
which corresponded to the sample with the great-
est SOC value, displayed the maximum absorbance
between 500 and 750 nm. This was in line with the
findings of Stenberg et al. (2010), who discovered that
organic soils had decreased absorbance in the NIR
wavelength region. In the NIR region, clear absorp-
tion features were recorded near 1 440 and 1 915 nm,
which were attributed to the OH-soil hygroscopic
moisture in the clay minerals (Stenberg et al. 2010).
At 2 100 nm, the absorption is determined by the
nitrogen content, and due to the relationship between

Table 1. Descriptive statistics for the soil organic carbon (SOC) of the LUCAS 2015 database and the newly sampled data

SOC (g/kg)
Dataset N No. of LC No. of LU
min max Q25 Q75 mean SD med skew
LUCAS 2015 21 859 68 23 0.1 560.2 12.5 38.6 42.2 76.6 20.4 4.3
New samples 4239 60 19 0.4 517.2 15.2 54.1 46.4 59.3 29.2 4.1

New samples — a new soil sample added to the LUCAS 2015 database; N — No. of samples; LC — land cover class type; LU —

land use type; SD — standard deviation; med — median; skew — skewness; Q25 — the first quartile; Q75 — the third quartile
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1.2 Figure 2. Spectral variability in the
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nitrogen and organic matter, we observed an increase
in the absorption depth with the SOC content. The ab-
sorption feature at 2 207 nm is usually caused by Al-OH,
and this absorption feature associated with clay min-
eralogy is critical for soils with a low SOC content.
In addition, there is an organic matter-related C-H
characteristic peak near 2 300 nm. In spite of the
large-scale soil diversity and the multiple interactions
among the soil absorbance and other soil properties
(e.g., texture, structure, and mineralogy), the spectral
curves corresponding to different SOC contents showed
the same trends as those observed in previous studies
(Viscarra Rossel et al. 2006).

The PLSR model, which fitted the original values
of the SOC, resulted in R* of 0.61, RPD of 1.61, and
RMSEP of 17.60 g/kg in the validation subset. The
PLSR reference model, which fitted the natural log
values of the SOC, led to R? of 0.73, RPD of 1.93,
and RMSEP of 14.99 g/kg. This demonstrated that
standardising the SOC prior to modelling significantly
improves the model performance.

Local PLSR. Figure 3 is an illustration of the local
PLSR approach showing an example for the validation

2500

sample. Sample 11104 contains SOC (63.3 g/kg), clay
(19%) and CaCOs3 (26 g/kg). The nearest neighbours
of this sample contains SOC, clay and CaCOs3 with
mean values of 43.39 g/kg, 14.49% and 41.36 g/kg
and standard deviations of 35.34 g/kg, 9.07% and
88.19 g/kg, respectively. Although no significant
differences can be observed in the pre-processed
absorption spectra of sample 11104 and its near-
est neighbours, there were significant differences
in their soil properties. It supported the observation
by Nocita et al. (2014) that in sizable datasets, even
spectrally identical neighbours can have wildly dis-
similar soil characteristics.

In this paper, Euclidean distance was adopted as the
distance metric and a fixed number of calibration
samples were used to calibrate the model for each
validation sample. The number of nearest neighbours
strongly influenced the SOC prediction accuracy.
To determine the best fixed number of calibration
samples, we selected 30% of the calibration dataset
as the test validation set, using the Kennard-Stone
algorithm (Kennard & Stone 1969), and iteratively
tested different numbers. The performance of the

T
Sample 11104

o
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T
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Figure 3. An example of the local par-
tial least squares regression (PLSR)
approach showing the absorbance
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Table 2. The test validation result for the local partial least squares regression (PLSR) model with different number

of nearest neighbours

No. of Model performance Model data

neighbours R>  RMSEP (g/kg) rRMSEP RPD RPIQ LV NvalT NcalT
50 0.7221 416.4828 18.8895 1.8971 2.6261 17 890 2077
100 0.7760  221.6711 16.9590 2.1131 2.9250 17 890 2077
250 0.8038 228.7834 15.8737 2.2575 3.1250 17 890 2077
500 0.7840 255.9636 16.6545 2.1517 2.9785 17 890 2077
750 0.7654 346.1274 17.3556 2.0648 2.8582 17 890 2077

RMSEP - root mean squared error of prediction; IRMSEP — relative RMSEP; RPD - ratio of performance to deviation; RPIQ —
ratio of performance to interquartile range; LV — latent variables; NvalT — No. of test validation samples; NcalT — No. of test

calibration samples; bold — optimal results

local model with different numbers of nearest neigh-
bours in the test validation set is shown in Table 2.
From 50 to 250 nearest neighbours, an improvement
in the model performance was observed except for the
RMSEP. From 250 to 750 nearest neighbours, a slow
decrease in the model performance was observed.
At last, we chose the number of neighbours which led
to the best results within the test validation set. Ap-
plying the local PLSR method with a distance metric
of Euclidean distance and 250 nearest neighbours
to the validation dataset, we were able to calibrate
good prediction models with R* = 0.7557, RMSEP =
13.3817 g/kg, rIRMSEP = 10.9486, RPD = 2.0231 and
RPIQ = 2.8466. Since the local PLSR algorithm built
a unique calibration model for each validation sample,
the algorithm ran a total of 30.05 s.

Clustering approaches and PLSR. The results
of the hierarchical clustering and k-means clustering
are shown in Figure 4. As shown on the left in Figure 4,

200 + 4

150 |

100 4

e

Leaf nodes

Distance

the x-axis in the tree diagram represents the number
of sub-nodes in each node, and the splitting stops
when the number of sub-nodes is less than 30. This
is because the samples included when the number
of sub-nodes is less than 30 are already very similar.
The y-axis in the tree diagram indicates the distance
between the different clusters. Based on the dendro-
gram obtained by the hierarchical clustering, we set
the number of clusters to four as the input parameter
of the k-means algorithm. As shown on the right
in Figure 4, a PCA was applied to the pre-processed
spectral data prior to the hierarchical clustering and
k-means clustering, resulting in a first principal com-
ponent (PCA1) contribution of 86.51% and a second
principal component (PCA2) contribution of 10.63%,
with a total contribution of 97.14%. The k-means
clustering of the soil spectral data was performed
mainly based on the magnitude of PCA1L, i.e., the
intensity of the absorbance. Secondly, it was based

6 T
. Cluster 1
4 Cluster 2 ]
[ Cluster 3
- Cluster 4
O Data to cluster 1
2 F Data to cluster 2 |
x Data to cluster 3
132) O Data to cluster 4
g‘ 0r X Cluster centroid |
A=)
S !
9]
-4
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—6 | |
-8 . L .
-10 -5 0 5 10 15 20

PCA 1 (86.51%)

Figure 4. The results of hierarchical clustering (left) and k-means clustering (right)

PCA - principal component analysis
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Figure 5. Mean spectra of the clusters showing the principal component analysis (PCA) and hierarchical cluster based
approaches; numbers in brackets are the number of samples within each cluster including the calibration samples (left);
boxplots showing the soil organic carbon (SOC) distribution within the clusters (right)

on the shape characteristics of the spectral curve,
which was reflected in the differences in PCA2 of the
four clustering centres. The PCA2 of each cluster-
ing centre (-0.5535, —0.2920, 0.1819 and 0.2351)
was basically around 0, so there was little difference
in the shape of the spectral curves.

Figure 5 shows the mean reflectance and SOC range
for each spectral cluster in the calibration subset. Since
PCA-based clustering focuses on spectral variance,
it can be seen in Figure 5 that there are some differences
in the spectra and SOC contents between the clusters.
The mean spectra of the clusters show differences mainly
in the absorbance with the smallest, cluster 3, showing
the darkest mean spectrum and, cluster 1, showing the
brightest, related to the lowest SOC values within this
cluster. This indicated the absorbance increased with
an increase in the SOC content.

All the validation results for the k-means clustering
approach combined with the hierarchical clustering

are shown in Table 3. All the validation results for
the different clusters are shown in Figure 6. The co-
efficient of variation of the SOC content for all the
validation samples was 0.78. The coefficients of vari-
ation of the SOC in cluster 1, cluster 2, cluster 3, and
cluster 4 were 0.64, 0.65, 0.99, and 0.59, respectively.
The higher coefficient of variation in cluster 3 may
be caused by the small number of samples in clus-
ter 3. The coefficients of variation in all the other
clusters were lower than the coefficients of variation
in the entire validation set. This may be one of the
reasons why the k-means-based modelling approach
can improve the prediction accuracy. The k-means
approach combined with hierarchical clustering re-
sulted in four clusters with calibration sizes ranging
from 295 to 1 082 samples. Variable validation results
were obtained depending on the spectral clustering,
ranging from moderate (R* = 0.6117, cluster 1) to very
good (R* = 0.8025, cluster 3). Except for these two

Table 3. Overall validation results for the k-means clustering approaches

N g RMSE . oMsE RPD RPIQ Ly oD Mean  SOCrange
(g/kg) (g/kg)
k-means PLSR 1272 07553 14.6126 12.3967 20214 28442 175 284 360  12-3347
Cluster 1 385 06117 9.2015 13.8643 1.6049 2.0528 17 134 207  12-8l.1
Cluster 2 186 07384 192741 7.8888 19419 24764 18 401 614  83-3347
Cluster 3 24 0.8025 40.0221 116491 2.2499 3.4719 15 681 685  7.3-3257
Cluster 4 677 06802 139354 104707 17684 23107 20 215 362  4.0-144.9

PLSR — partial least squares regression; RMSE — root mean squared error; rRMSE — relative RMSE; RPD - ratio of performance

to deviation; RPIQ — ratio of performance to interquartile range; LV — latent variables; SD — standard deviation; SOC — soil
organic carbon; for the row k-means PLSR, the R?, RPD, RPIQ and rRMSE use combined predicted values; for the column LV,

the mean values are calculated; bold — optimal results
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Figure 6. Observed vs. predicted soil organic carbon (SOC) values of the validation samples for the k-means clustering

approaches; Pearson’s correlation coefficient r is given

spectral clusters, in general, a good performance
is achieved with R? 0of 0.6802 and 0.7384 in the other
two spectral clusters. With values over 1.8 for the two
models with strong model performance and below 1.8
for the two models with medium performance, the
RPD values highlighted this claim. Although cluster 3
had the best modelling performance including the
highest R?, RPD, and RPIQ values (Table 3), cluster 3
had the highest RMSEP of 40.02 g/kg. This cluster
has the highest mean SOC value of 68.5 g/kg and the
highest standard deviation of 68.1 g/kg. This result
isin line with Stenberg et al. (2010), who stated that
the prediction error of the spectral model increases
with an increase in the standard deviation of the
predicted soil properties. Therefore, it is important
to consider the distribution of the SOC values when
comparing the RMSEP of different study sites and
clusters. The RPD, RPIQ, or rRMSEP are more suit-
able because these three metrics consider different
ranges and differences (Ward et al. 2019).

Compared to the reference PLSR model, the k-means
clustering was able to improve the organics (OM) pre-
diction results because it could handle non-linearities
in large heterogeneous datasets. Similar conclusions
were reached by Aragjo et al. (2014), who compared
clustering results with augmented regression trees
and support vector machines as the reference model
and found that both models performed in the same
range. Thus, k-means clustering combined with the
PLSR model alone seems to improve the performance
of the PLSR reference model. Based on the experimen-
tal results in this paper, we also validated this idea.

Overall results. The overall results in Table 4 show
that the normalising the SOC before calibrating the
prediction model could significantly improve the
model performance compared to the PLSR model.
Nevertheless, so far, only few studies have transformed
skewed SOC contents before the spectral predictions
(e.g., Viscarra Rossel et al. 2016, Ward et al. 2019).
The k-means clustering approach could also improve
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Table 4. The overall validation results for the reference model and the clustering approaches (No. of validation samples = 1 272)

Model performance Model data
R? RMSEP (g/kg)  rRMSEP RPD RPIQ LV time (s)
PLSR 0.6179 17.6007 48.8521 1.6179 1.7215 19 1.68
PLSR reference 0.7316 14.9927 11.4753 1.9303 2.7159 17 1.70
k-means PLSR 0.7553 14.6126 12.3967 2.0214 2.8442 17.5 4.52
Local PLSR 0.7557 13.3817 10.9486 2.0231 2.8466 17 30.05

PLSR — partial least squares regression; RMSEP — root mean squared error of prediction; IRMSEP — relative RMSEP; RPD - ratio

of performance to deviation; RPIQ — ratio of performance to interquartile range; LV — latent variables; bold — optimal results

the RMSEP, R?, RPD and RPIQ compared to the PLSR
reference. In the validation subset, the overall best
results were achieved by the local PLSR approach.
It was able to improve the prediction accuracy visible
in all the model parameters, e.g., the RMSEP could
be reduced by > 1.6 g/kg compared to the PLSR
reference model. Similar results to the local PLSR
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were obtained by the k-means PLSR, but the running
time of the k-means PLSR algorithm was reduced
substantially, from 30.05 s to 4.52 s. The main reason
that k-means PLSR significantly improves the speed
of the algorithm operation is the relatively small
number of clusters (four in this study). However, the
local PLSR approach builds a prediction model for
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Figure 7. Observed vs. predicted soil organic carbon (SOC) values of the validation samples for the partial least squares

regression (PLSR) reference and the clustering approaches

The colour represent the four k-means clusters; Pearson’s correlation coefficient r is given; PCA — principal component analysis
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each validation sample, which leads to about 1200
different calibration subsets considered as clusters.
Ramirez-Lopez et al. (2013) used a spectral-based
learner to predict the SOC from the regional soil
spectral library (R-SSL) of the State of Sdo Paulo and
the global soil spectral library (G-SSL). The results
showed that the model prediction performance was
R? of 0.59 and RMSE of 0.25 g/kg in the R-SSL and
R*0f 0.68 and RMSE of 0.8 g/kg in the G-SSL. Nocita
etal. (2014) used a local regression model with the PLS
distance and sand content as a covariates to achieve
a high accuracy soil organic carbon prediction in the
LUCAS 2012 database, with R?> of 0.84, RMSE of 3.6 g
per kg, RPD of 2.5, and RPIQ of 2.3. Ward et al. (2019)
used the local PLSR method for the SOC prediction
based on the spectral data only in the LUCAS 2012
database, with the R? of 0.67, RMSE of 5.16 g/kg,
RPD of 1.74, and RPIQ of 1.96. Previous studies have
demonstrated that the prediction error of spectral
models increases with an increasing standard devia-
tion of the predicted soil properties (Stenberg et al.
2010; Nocita et al. 2014). Since the soil samples used
in this paper differ from the above studies, model
prediction performance metrics other than RMSE
were compared. Comparing the results of our study
with those of Ramirez-Lopez et al. (2013) and Ward
et al. (2019), we found some improvement in the
performance of the model in this paper. Although
comparing our results with the results of Nocita et al.
(2014), we found a slight decrease in the performance
of the model in this paper. This is mainly because
Nocita et al. (2014) improved the local regression
process by including other covariates (geographical
and texture information) in the calculation of the
distance between samples and using PLS distances.
The acquisition of covariate information can consume
a lot of human, time, and financial resources, thus
failing to reflect the characteristics of the hyperspec-
tral technology. In this paper, only spectral data are
considered, thus reducing the input information for
modelling and making it more general. Meanwhile,
the prediction error of the SOC in this paper is within
a reasonable range in a large-scale soil database.
As shown in Figure 7, the underestimation of higher
SOC values is a well-known problem in PLSR model-
ling as shown in the results for the PLSR reference
and clustering approach. The reasons for this are
the skewed distribution of SOC content leading
to under-representation of higher SOC values in the
calibration set (Brown et al. 2005) and changes in
the relationship between higher SOC values and

the spectra due to saturation of the SOC spectral
response (Nocita et al. 2014).

CONCLUSION

We tested a k-means clustering algorithm that was
based on a PCA of the spectra. The number of clusters
of the k-means algorithm was determined by using
hierarchical clustering instead of exhaustive enu-
meration, thus significantly reducing the algorithm
runtime. Compared to the local PLSR approach,
the k-means clustering method was able to reduce
the algorithm runtime from 30.05 s to 4.52 s while
achieving similar results. Compared with the local
PLSR method, the k-means method can save 84.96%
of the modelling time for the SOC prediction mod-
elling. Both approaches could improve the results
of the PLSR reference model. We noted that the dis-
tribution of the SOC content in a large soil spectral
library was severely skewed, which had a negative
impact on the prediction accuracy. Therefore, it was
essential to convert the highly skewed SOC content
to an approximate normal distribution before the
model calibration.

With this study, we have taken a step forward
in adapting the spectral soil model to the need for
real-time SOC quantification. The results of this
study show that: (i) it is possible to improve the
SOC prediction by dividing the large soil database
into smaller groups compared to the global model;
(ii) compared with the local PLSR approach, the
k-means clustering approach based on a PCA and
hierarchical clustering achieved similar results while
significantly improving the algorithm running speed.
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