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Abstract: The estimation of the level of the soil organic carbon (SOC) content plays an important role in assessing the 
soil health state. Visible and Near Infrared Diffuse Reflectance Spectroscopy (Vis-NIR DRS) is a fast and cheap tool 
for measuring the SOC. However, when this technology is applied on a larger area, the soil prediction accuracy dec-
reases due to the heterogeneity of the samples. In this paper, we first investigate the global model performance in the 
LUCAS EU-wide topsoil database. Then, different clustering strategies were tested, including the k-means clustering 
based on the principal component analysis (PCA) and hierarchical clustering, combined with the partial least squares 
regression (PLSR) models, and a clustering based on a local PLSR approach. The best validation results were obtained 
for the local PLSR approach with R2 = 0.75, root mean squared error of prediction (RMSEP) = 13.38 g/kg and ratio 
of performance to interquartile range (RPIQ) = 2.846, but the algorithm running time was 30.05 s. Similar results were 
obtained for the k-means clustering method with R2 = 0.75, RMSEP = 14.61 g/kg and RPIQ = 2.844, at only 4.52 s. This 
study demonstrates that the PLSR approach based on k-means clustering is able to achieve similar prediction accuracy 
as the local PLSR approach, while significantly improving the algorithm speed. This provides the theoretical basis for 
adapting the spectral soil model to the needs of real-time SOC quantification.
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Fundamental ecological services provided by soils 
include carbon sequestration, energy security, and 
food security (Kibblewhite et al. 2012). When it comes 
to carbon sequestration, soils often provide greater 
carbon storage capabilities to partially offset fuel 
emissions and thus reduce the danger of global 
warming (Conant et al. 2010). Soil organic carbon 
is essential for sustaining soil quality and food pro-
duction, and its decline is one of the main threats 
of soil degradation (Lal 2004). Determining the soil 
organic carbon (SOC) content is a key step in assess-
ing soil condition (Sanchez et al. 2009). As a result, 
there is an increasing demand to monitor the SOC 
content and other soil parameters (Lal 2004). Un-
fortunately, the costly and time-consuming nature 

of conventional soil sampling and analysis restricts 
the monitoring of soil properties on a large scale 
(Conant et al. 2010; Araújo et al. 2014). 

Visible (Vis, 400–700 nm) and Near-Infrared (NIR, 
700–2 500 nm) diffuse reflectance spectroscopy (DRS) 
was first applied to soil analyses in the 1980s and 
was shown to hold potential for predicting the soil 
SOC content and other properties (Dalal & Henry 
1986; Viscarra Rossel et al. 2006). Therefore, diffuse 
reflectance spectroscopy provides a good quan-
titative alternative to soil properties (Islam et al. 
2003). Visible near-infrared spectroscopy has been 
widely applied to detect heavy metal soil contamina-
tion, soil salinisation and water pollution due to its 
advantages, such as cost-efficiency, ease of opera-
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tion, rapidity, minimal sample preparation and the 
development of chemometrics (Davies 2005). Soil 
spectroscopy is based on the assumption that ab-
sorption features in the visible range (400–700 nm) 
may be brought on by electron transitions (Ben-
Dor et al. 1999). Another assumption is that the 
concentration of a certain soil attribute is linearly 
proportional to the combination of the absorption 
features within the spectrum (Ben-Dor et al. 1999; 
Bellon-Maurel & McBratney 2011). These absorption 
features are attributed to overtones and combina-
tion bands of fundamental vibrations of some of the 
molecules’ functional groups, such as the hydroxyl 
groups (OH). Since the overtone and combination 
bands of each functional group are located at specific 
wavelengths of the spectrum, various materials can 
be recognised (Ben-Dor et al. 1999).

The prediction of soil properties requires the crea-
tion of a spectral library that links the spectra with 
the soil physical and chemistry data. Such a library 
should be designed to represent the variability of soil 
properties for the soil type of interest. Different math-
ematical modelling approaches are then used to infer 
soil properties (Shepherd & Walsh 2002; Viscarra 
Rossel & Behrens 2010; Stevens et al. 2013). In large 
and complex datasets, the relationship between soil 
properties and spectral data is highly non-linear and 
spatially dependent (Stenberg et al. 2010; Stevens 
et al. 2013). This usually leads to a decrease in the 
prediction accuracy, as well as increasing variances 
in the soil properties that finally produce larger 
prediction errors (Stevens et al. 2013; Nocita et al. 
2014; Ward et al. 2019). 

Nevertheless, there is local stability in the spectral 
variance associated with soil properties (Stevens et al. 
2013). Thus, one possible approach for predicting soil 
properties in a large-scale database is the use of lo-
cal regression (Nocita et al. 2014). Local regression 
has been widely applied to estimate soil properties 
in large-scale databases and has achieved promising 
results. In contrast to other local algorithms, Ramirez-
Lopez et al. (2013) proposed a new algorithm for 
retrieving a set of nearest neighbours using an opti-
mised principal component distance. This procedure 
selects the optimal number of principal components 
by considering the soil composition of the sample 
(Ramirez-Lopez et al. 2013). Nocita et al. (2014) first 
divided their cropland database into mineral and or-
ganic soils and obtained the best results for mineral 
soils using the local partial least squares regression 
(PLSR), which utilised a fixed number of nearest 

neighbours and set the PLS distance as a spectral 
distance measure. In addition, they used the sand 
content and geographic data as auxiliary distance 
measures for the further improvement of the pre-
diction accuracy (Nocita et al. 2014). However, their 
method required prior knowledge not only from the 
spectra, but also from the additional SOC content, 
sand content and chemical data. Ward et al. (2019) 
used the exhaustive method to select the number 
of clusters that achieved the best PLSR model valida-
tion results as the input of the k-means algorithm. 
However, the process was time-consuming and lacks 
any theoretical basis (Ward et al. 2019).

The main points of this study include the following: 
(i) improving the performance of the SOC prediction 
model by converting the highly skewed SOC content 
to an approximately normal distribution through 
natural logarithms; (ii) using hierarchical clustering 
to determine the appropriate number of clusters, 
thus reducing the modelling time; and (iii) using only 
spectral data without using any geochemical soil in-
formation in building the SOC prediction model. The 
objectives of this paper are to (i) investigate whether 
spectral clustering has the potential to group large 
soil spectral libraries and thus improve the predic-
tion accuracy compared to non-clustering-based 
models, and (ii) whether spectral clustering can 
achieve prediction accuracy similar to that of local 
PLSR and reduce the modelling time. 

MATERIAL AND METHODS

LUCAS soil database. This study is based on the 
pan-European Land Use/Land Cover Area Frame Sur-
vey (LUCAS) 2015 topsoil database which is managed 
by EUROSTAT together with the European Com-
mission’s Directorates-General for Environment and 
the Joint Research Centre at Ispra, Italy (Tóth et al. 
2013; Orgiazzi et al. 2017; Jones et al. 2020; https://
esdac.jrc.ec.europa.eu). In 2015, the LUCAS survey 
was carried out in all the EU-28 Member States (MS) 
and included 21 859 top-soil samples (0–20 cm) col-
lected on different land use types. In the countries 
sampled in 2009 and 2012, 90% of the locations were 
maintained while the remaining 10% of the points 
were substituted by new sampling locations, including 
points above 1 000 m in elevation, which were out 
of the scope of the LUCAS 2009 and LUCAS 2012 
surveys. To ensure the comparability of the data, 
all the survey teams followed a single soil sampling 
protocol. The sampling protocol consisted of collect-
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ing a composite of five subsamples, the first of which 
was collected at a selected location, while the other 
four subsamples were collected at a distance of 2 m 
along the main direction. All the soil samples were 
air-dried in a drying chamber at a temperature of 40 °C 
for an average of 3 days. The soil samples were crushed 
and sieved, and fractions smaller than 2 mm were 
retained for further analysis. The following proper-
ties were then analysed: the particle size distribution, 
pH of H2O, pH of CaCl2, organic carbon, carbonate, 
nitrogen, phosphorus, and potassium, cationic exchange 
capacity (CEC), and visible-NIR diffuse reflectance. 

After heating the soil to 900 °C, the total carbon 
content was measured using a VarioMax CN Analyser 
(Elemental Analysis, Germany) and the SOC was 
obtained by subtracting the carbonate content (meas-
ured according to ISO 10693:1995) from the total 
carbon amount. The Vis-NIR absorbance of the soil 
was measured using a FOSS XDS Rapid Content 
Analyser (FOSS NIR Systems Inc., Denmark), which 
operates at the wavelength range of 400–2 500 nm 
with a spectral resolution of 2 nm and a spectral data 
interval of 0.5 nm. Each sample was placed on a 140 × 
40 × 50 mm cuvette and scanned twice in both direc-
tions. The average spectrum of the two replicates was 
calculated and any samples with absorbance repeat 
standard deviations greater than 1% were removed. 

In order to reduce the redundancy of the spectral 
data and the number of model calculations, we resa-
mpled the spectral data interval to 2 nm. Similarly, 
we selected 4 239 soil samples as the research ob-
jects, which were collected for the first time in the 
LUCAS 2015 database.

Database pre-processing. In several studies, the 
1st derivative led to the best modelling results (e.g., 
Stevens et al. 2013; Nocita et al. 2014). Thus, several 
pre-processing techniques were applied: 1st derivative, 
Savitzky-Golay smoothing with 2nd order polynomial 
and a window size of 20 data points which corre-
sponds to 40 nm (Savitzky & Golay 1964).

The distribution of the SOC content in the subset 
studied in this paper is highly skewed (skewness = 4.072), 
so we transformed it to approximately normally distrib-
uted values using the natural logarithm (new skewness 
= 0.61). The dataset was then divided into subsets for 
calibration (70%) and validation (30%) using the Kennard-
Stone algorithm (Kennard & Stone 1969), which selects 
samples based on a distance metric to produce a typical 
subset. The clustering and model calibration are only 
based on the calibration subset, and the validation subset 
is solely used to assess the model performance.

Methodological overview. In this study, we com-
pared three different modelling approaches (Figure 1): 
(i) a PLSR approach was used based on the com-
plete database without clustering, called the refer-
ence model (Figure 1A). (ii) the k-means algorithm 
based on principal component analysis (PCA) and 
hierarchical clustering was used (Figure 1B), then 
SOC predictions were performed on each spectral 
cluster using PLSR; (iii) a local PLSR method was 
used, where for each validation sample, a set of the 
most similar calibration samples was selected based 
on the distance metric for calibration of the inde-
pendent PLSR model (Figure 1C). For comparability 
reasons, all the models are calibrated and validated 
on the exact same subset of LUCAS. 

Reference model without clustering using PLSR. 
As an initial stage, the PLSR model for the SOC pre-
diction was built based on the spectral data of the 
newly collected samples in the LUCAS 2015 database. 
PLSR integrates the advantages of principal compo-
nent regression, a typical correlation analysis and 
multilinear linear regression, which has been used 
in many disciplines such as social sciences, bioinfor-
matics and economics (Wold et al. 2001). PLSR uses 
a few factors and orthogonal factors, called latent 
variables (LVs) as new predictor variables of the 
response Y. The number of LVs is unknown and has 
a significant effect on the prediction results of the 
model. In this paper, a combination of two com-
monly used methods was chosen to achieve good 
model accuracy without over-fitting. (i) We used 
10-fold cross-validation to estimate the root mean 
square error (RMSE) for different numbers of LVs 

 

 

A B C 

Figure 1. Overview of the general processing structure
PLSR – partial least squares regression; PCA – principal 
component analysis; SOC – soil organic carbon
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and chose the smallest number of LVs within one 
standard deviation of the minimum RMSE (Stevens 
et al. 2013). (ii) We used the adjusted coefficient 
of determination (adj. R2, see Equation (1)) which 
takes the number of components used in a model 
into account. 

adj. R2 = 1 – (1 – R2) × (n – 1)/(n – k – 1) 	  (1)

where:
n – the number of samples;
k – the number of LVs.

Hierarchical clustering and k-means clustering. 
As shown in Figure 1B, we first divided the spectral 
data into several different clusters using the cluster-
ing algorithms, and then built the PLSR model for 
each spectral cluster. In order to eliminate noise, 
reduce multicollinearity and improve the computa-
tional speed, a principal component analysis based 
on spectral variance was applied to the pre-processed 
spectral data before the hierarchical clustering and 
k-means clustering in this study. The PCA method 
was used only for the clustering process. The k-means 
algorithm demands the number of clusters as an 
input, and here we used the hierarchical clustering 
algorithm to obtain the appropriate number of clus-
ters instead of the exhaustive method commonly 
adopted in previous studies.

The hierarchical agglomerative clustering al-
gorithm is a hierarchical approach that gradually 
merges existing clusters until the desired num-
ber of clusters is reached (Wishart 1969). We used 
Ward association as the association criterion and 
Euclidean distance as the distance metric. Finally, 
we determined the number of clusters based on the 
dendrogram generated by the hierarchical clustering 
algorithm, which is then used as the input to the 
k-means algorithm.

k-means starts with randomly selected initial clus-
ter centres and assigns the closest samples to these 
centres. Based on these clusters, it calculates new 
cluster centres and reassigns all the samples. This 
process continues until the set number of clusters 
is reached. The following steps are applied to the 
set of clusters: for each cluster, the individual PLSR 
models are calibrated in the calibration dataset of the 
pre-processed spectra. As the clustering process 
was based exclusively on the calibration subset, 
each validation sample had to be assigned to one 
of those clusters. To validate this clustering model-

ling approach, a PLSR model was built based on the 
clusters in the calibration set to which the validation 
sample belonged, in order to predict the SOC content 
of this validation sample. 

Local partial least square regression. Locally 
weighted PLSR models are the memory-based learn-
ing approaches and create a specific calibration set 
for each sample to be predicted, which outperform 
machine learning algorithms such as artificial neural 
networks and decision trees (Ramirez-Lopez et al. 
2013). The local PLSR selects the most similar set 
of spectral samples for each validation sample in the 
calibration set based on the similarity metric, and 
builds an independent PLSR model for each valida-
tion sample based on this set of spectral samples 
(Ward et al. 2020). As shown in Figure 1C, a basic 
local PLSR approach can be described with the fol-
lowing pseudo-code: 
1. Given a set of n reference samples

(Xr, Yr) = {xri, yri}n
i=1

and a set of m samples to predict

(Xp, Yp) = {xpi, ypi}m
i=1

where:
Xr, Yr	 – spectral data matrix and SOC content in the 

calibration set, respectively;
Xp, Yp	– spectral data matrix and SOC content in the 

validation set, respectively.

2. for each sample to predict pi i = 1, 2, …, m do
3. compute di, the distance vector between Xr and xpi

4. find the most similar samples in Xr as the k ones 
minimising di, i.e., the k-nearest neighbours

5. fit a PLSR model with the k nearest neighbours
6. choose the optimal model parameters for the 

prediction of pi, e.g., appropriate number of LVs 
for a PLSR model

7. predict the SOC content of sample pi and compute 
the square error (ypi – ŷpi)2 

8. end
9. evaluate the model performance using the root 

mean square error (RMSE)
Model assessments. To assess the model accuracy, 

the ln-transformed SOC values (measured and pre-
dicted) were used for dimensionless measurements, 
whereas for measurements with units (g/kg), the 
original SOC values and back-transformed predicted 
values were used. The coefficient of determina-
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tion (R2) (Equation (2)), the root mean squared error 
of prediction (RMSEP, Equation (3)), the relative 
RMSEP (rRMSEP) (Equation (4)), the ratio of per-
formance to deviation (RPD) (Equation (5)) and the 
ratio of performance to interquartile range (RPIQ, 
Equation (6)) were used to evaluate and compare 
the model performance: 

 	 (2)

where:
yoi  – the observed value of sample i;
ypi –the predicted value of sample i;
y–o – the mean of the observed SOC value. 

 	  (3) 	 

where:
n – the number of samples.

rRMSEP = 100 × RMSEP/y–o 	  (4)

RPD = SD(yo)/RMSEP 	  (5)

where:
SD	– the standard deviation.

RPIQ = IQ(yo)/RMSEP 	  (6)

where:
IQ – the interquartile range.

The rRMSEP, RPD, and RPIQ are ways of nor-
malising the RMSE’s of the prediction to compare 
calibration models and datasets where the measured 
variables have different ranges or variances (Bellon-
Maurel & McBratney 2011). 

In this paper, we applied Matlab 2018a to imple-
ment the PLSR model, cluster algorithms and local 
PLSR model. Excel 2016 was applied for the spectral 
data resampling and pre-processing. 

( ) ( )
= =

= − − −   

( ) ( )
= =

= − − −   

( )
=

 
= −  
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RESULTS AND DISCUSSION

LUCAS database and pre-processing. We used 
the samples that were first sampled in the LUCAS 
2015 database as the study object, so the number 
of samples was reduced to 4 239 values. Within 
the selected LUCAS 2015 subset, the SOC content 
ranges between 0.4 and 517.2 g/kg, with a mean value 
of 46.42 g/kg and a standard deviation of 59.34 g/kg. 
The percentage of clay ranges between 0 and 62% 
and is 19.15% on average. The CaCO3 content var-
ies between 0 and 898 g/kg with a mean of 85.34 g 
per kg and a standard deviation of 167.22 g/kg. The 
SOC content and CaCO3 content both showed high 
standard deviations, indicating considerable vari-
ation among the soil samples. This variation may 
have been caused by the fact that the soil samples 
were gathered from various land cover and use types. 
As shown in Table 1, the standard deviation of the 
SOC in the LUCAS 2015 database was slightly higher 
than the standard deviation of the SOC for the newly 
sampled data, but the other statistical results were 
similar. This indicates that the newly sampled soil 
samples used in this paper are representative. 

The spectra show a large variation in the absorbance 
due to the influence of the SOC content and miner-
alogical composition (Figure 2). In the visible region 
(400–700 nm), the difference in the reflectance for 
higher SOC content classes is clearer than in the NIR 
region (Baumgardner et al. 1986). While this was not 
true for longer wavelengths, the darkest spectrum, 
which corresponded to the sample with the great-
est SOC value, displayed the maximum absorbance 
between 500 and 750 nm. This was in line with the 
findings of Stenberg et al. (2010), who discovered that 
organic soils had decreased absorbance in the NIR 
wavelength region. In the NIR region, clear absorp-
tion features were recorded near 1 440 and 1 915 nm, 
which were attributed to the OH-soil hygroscopic 
moisture in the clay minerals (Stenberg et al. 2010). 
At 2 100 nm, the absorption is determined by the 
nitrogen content, and due to the relationship between 

Table 1. Descriptive statistics for the soil organic carbon (SOC) of the LUCAS 2015 database and the newly sampled data

Dataset N No. of LC No. of LU
SOC (g/kg)

min max Q25 Q75 mean SD med skew
LUCAS 2015 21 859 68 23 0.1 560.2 12.5 38.6 42.2 76.6 20.4 4.3
New samples 4 239 60 19 0.4 517.2 15.2 54.1 46.4 59.3 29.2 4.1

New samples – a new soil sample added to the LUCAS 2015 database; N – No. of samples; LC – land cover class type; LU – 
land use type; SD – standard deviation; med – median; skew – skewness; Q25 – the first quartile; Q75 – the third quartile
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nitrogen and organic matter, we observed an increase 
in the absorption depth with the SOC content. The ab-
sorption feature at 2 207 nm is usually caused by Al-OH, 
and this absorption feature associated with clay min-
eralogy is critical for soils with a low SOC content. 
In addition, there is an organic matter-related C-H 
characteristic peak near 2 300 nm. In spite of the 
large-scale soil diversity and the multiple interactions 
among the soil absorbance and other soil properties 
(e.g., texture, structure, and mineralogy), the spectral 
curves corresponding to different SOC contents showed 
the same trends as those observed in previous studies 
(Viscarra Rossel et al. 2006).

The PLSR model, which fitted the original values 
of the SOC, resulted in R2 of 0.61, RPD of 1.61, and 
RMSEP of 17.60 g/kg in the validation subset. The 
PLSR reference model, which fitted the natural log 
values of the SOC, led to R2 of 0.73, RPD of 1.93, 
and RMSEP of 14.99 g/kg. This demonstrated that 
standardising the SOC prior to modelling significantly 
improves the model performance. 

Local PLSR. Figure 3 is an illustration of the local 
PLSR approach showing an example for the validation 

sample. Sample 11104 contains SOC (63.3 g/kg), clay 
(19%) and CaCO3 (26 g/kg). The nearest neighbours 
of this sample contains SOC, clay and CaCO3 with 
mean values of 43.39 g/kg, 14.49% and 41.36 g/kg 
and standard deviations of 35.34 g/kg, 9.07% and 
88.19 g/kg, respectively. Although no significant 
differences can be observed in the pre-processed 
absorption spectra of sample 11104 and its near-
est neighbours, there were significant differences 
in their soil properties. It supported the observation 
by Nocita et al. (2014) that in sizable datasets, even 
spectrally identical neighbours can have wildly dis-
similar soil characteristics. 

In this paper, Euclidean distance was adopted as the 
distance metric and a fixed number of calibration 
samples were used to calibrate the model for each 
validation sample. The number of nearest neighbours 
strongly influenced the SOC prediction accuracy. 
To determine the best fixed number of calibration 
samples, we selected 30% of the calibration dataset 
as the test validation set, using the Kennard-Stone 
algorithm (Kennard & Stone 1969), and iteratively 
tested different numbers. The performance of the 

Figure 2. Spectral variability in the 
LUCAS 2015 subset showing the 
mean and standard deviation, as well 
as  the darkest and the brightest 
spectrum
SD – standard deviation

Figure 3. An example of the local par-
tial least squares regression (PLSR) 
approach showing the absorbance 
spectra of  the validation samples 
(Val) and calibration samples (Cal)
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local model with different numbers of nearest neigh-
bours in the test validation set is shown in Table 2. 
From 50 to 250 nearest neighbours, an improvement 
in the model performance was observed except for the 
RMSEP. From 250 to 750 nearest neighbours, a slow 
decrease in the model performance was observed. 
At last, we chose the number of neighbours which led 
to the best results within the test validation set. Ap-
plying the local PLSR method with a distance metric 
of Euclidean distance and 250 nearest neighbours 
to the validation dataset, we were able to calibrate 
good prediction models with R2 = 0.7557, RMSEP = 
13.3817 g/kg, rRMSEP = 10.9486, RPD = 2.0231 and 
RPIQ = 2.8466. Since the local PLSR algorithm built 
a unique calibration model for each validation sample, 
the algorithm ran a total of 30.05 s. 

Clustering approaches and PLSR. The results 
of the hierarchical clustering and k-means clustering 
are shown in Figure 4. As shown on the left in Figure 4, 

the x-axis in the tree diagram represents the number 
of sub-nodes in each node, and the splitting stops 
when the number of sub-nodes is less than 30. This 
is because the samples included when the number 
of sub-nodes is less than 30 are already very similar. 
The y-axis in the tree diagram indicates the distance 
between the different clusters. Based on the dendro-
gram obtained by the hierarchical clustering, we set 
the number of clusters to four as the input parameter 
of the k-means algorithm. As shown on the right 
in Figure 4, a PCA was applied to the pre-processed 
spectral data prior to the hierarchical clustering and 
k-means clustering, resulting in a first principal com-
ponent (PCA1) contribution of 86.51% and a second 
principal component (PCA2) contribution of 10.63%, 
with a total contribution of 97.14%. The k-means 
clustering of the soil spectral data was performed 
mainly based on the magnitude of PCA1, i.e., the 
intensity of the absorbance. Secondly, it was based 

Table 2. The test validation result for the local partial least squares regression (PLSR) model with different number 
of nearest neighbours

No. of  
neighbours

Model performance Model data
R2 RMSEP (g/kg) rRMSEP RPD RPIQ LV NvalT NcalT

50 0.7221 416.4828 18.8895 1.8971 2.6261 17 890 2 077
100 0.7760 221.6711 16.9590 2.1131 2.9250 17 890 2 077
250 0.8038 228.7834 15.8737 2.2575 3.1250 17 890 2 077
500 0.7840 255.9636 16.6545 2.1517 2.9785 17 890 2 077
750 0.7654 346.1274 17.3556 2.0648 2.8582 17 890 2 077

RMSEP – root mean squared error of prediction; rRMSEP – relative RMSEP; RPD – ratio of performance to deviation; RPIQ – 
ratio of performance to interquartile range; LV – latent variables; NvalT – No. of test validation samples; NcalT – No. of test 
calibration samples; bold – optimal results

Figure 4. The results of hierarchical clustering (left) and k-means clustering (right)
PCA – principal component analysis
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on the shape characteristics of the spectral curve, 
which was reflected in the differences in PCA2 of the 
four clustering centres. The PCA2 of each cluster-
ing centre (–0.5535, –0.2920, 0.1819 and 0.2351) 
was basically around 0, so there was little difference 
in the shape of the spectral curves. 

Figure 5 shows the mean reflectance and SOC range 
for each spectral cluster in the calibration subset. Since 
PCA-based clustering focuses on spectral variance, 
it can be seen in Figure 5 that there are some differences 
in the spectra and SOC contents between the clusters. 
The mean spectra of the clusters show differences mainly 
in the absorbance with the smallest, cluster 3, showing 
the darkest mean spectrum and, cluster 1, showing the 
brightest, related to the lowest SOC values within this 
cluster. This indicated the absorbance increased with 
an increase in the SOC content. 

All the validation results for the k-means clustering 
approach combined with the hierarchical clustering 

are shown in Table 3. All the validation results for 
the different clusters are shown in Figure 6. The co-
efficient of variation of the SOC content for all the 
validation samples was 0.78. The coefficients of vari-
ation of the SOC in cluster 1, cluster 2, cluster 3, and 
cluster 4 were 0.64, 0.65, 0.99, and 0.59, respectively. 
The higher coefficient of variation in cluster 3 may 
be caused by the small number of samples in clus-
ter 3. The coefficients of variation in all the other 
clusters were lower than the coefficients of variation 
in the entire validation set. This may be one of the 
reasons why the k-means-based modelling approach 
can improve the prediction accuracy. The k-means 
approach combined with hierarchical clustering re-
sulted in four clusters with calibration sizes ranging 
from 295 to 1 082 samples. Variable validation results 
were obtained depending on the spectral clustering, 
ranging from moderate (R2 = 0.6117, cluster 1) to very 
good (R2 = 0.8025, cluster 3). Except for these two 

Table 3. Overall validation results for the k-means clustering approaches

N R2 RMSE
(g/kg) rRMSE RPD RPIQ LV

SD Mean SOC range
(g/kg)

k-means PLSR 1 272 0.7553 14.6126 12.3967 2.0214 2.8442 17.5 28.4 36.0 1.2–334.7
Cluster 1 385 0.6117 9.2015 13.8643 1.6049 2.0528 17 13.4 20.7 1.2–81.1
Cluster 2 186 0.7384 19.2741 7.8888 1.9419 2.4764 18 40.1 61.4 8.3–334.7
Cluster 3 24 0.8025 40.0221 11.6491 2.2499 3.4719 15 68.1 68.5 7.3–325.7
Cluster 4 677 0.6802 13.9354 10.4707 1.7684 2.3107 20 21.5 36.2 4.0–144.9

PLSR – partial least squares regression; RMSE – root mean squared error; rRMSE – relative RMSE; RPD – ratio of performance 
to deviation; RPIQ – ratio of performance to interquartile range; LV – latent variables; SD – standard deviation; SOC – soil 
organic carbon; for the row k-means PLSR, the R2, RPD, RPIQ and rRMSE use combined predicted values; for the column LV, 
the mean values are calculated; bold – optimal results

Figure 5. Mean spectra of the clusters showing the principal component analysis (PCA) and hierarchical cluster based 
approaches; numbers in brackets are the number of samples within each cluster including the calibration samples (left); 
boxplots showing the soil organic carbon (SOC) distribution within the clusters (right)
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spectral clusters, in general, a good performance 
is achieved with R2 of 0.6802 and 0.7384 in the other 
two spectral clusters. With values over 1.8 for the two 
models with strong model performance and below 1.8 
for the two models with medium performance, the 
RPD values highlighted this claim. Although cluster 3 
had the best modelling performance including the 
highest R2, RPD, and RPIQ values (Table 3), cluster 3 
had the highest RMSEP of 40.02 g/kg. This cluster 
has the highest mean SOC value of 68.5 g/kg and the 
highest standard deviation of 68.1 g/kg. This result 
is in line with Stenberg et al. (2010), who stated that 
the prediction error of the spectral model increases 
with an increase in the standard deviation of the 
predicted soil properties. Therefore, it is important 
to consider the distribution of the SOC values when 
comparing the RMSEP of different study sites and 
clusters. The RPD, RPIQ, or rRMSEP are more suit-
able because these three metrics consider different 
ranges and differences (Ward et al. 2019). 

Compared to the reference PLSR model, the k-means 
clustering was able to improve the organics (OM) pre-
diction results because it could handle non-linearities 
in large heterogeneous datasets. Similar conclusions 
were reached by Araújo et al. (2014), who compared 
clustering results with augmented regression trees 
and support vector machines as the reference model 
and found that both models performed in the same 
range. Thus, k-means clustering combined with the 
PLSR model alone seems to improve the performance 
of the PLSR reference model. Based on the experimen-
tal results in this paper, we also validated this idea.

Overall results. The overall results in Table 4 show 
that the normalising the SOC before calibrating the 
prediction model could significantly improve the 
model performance compared to the PLSR model. 
Nevertheless, so far, only few studies have transformed 
skewed SOC contents before the spectral predictions 
(e.g., Viscarra Rossel et al. 2016, Ward et al. 2019). 
The k-means clustering approach could also improve 

Figure 6. Observed vs. predicted soil organic carbon (SOC) values of the validation samples for the k-means clustering 
approaches; Pearson’s correlation coefficient r is given
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the RMSEP, R2, RPD and RPIQ compared to the PLSR 
reference. In the validation subset, the overall best 
results were achieved by the local PLSR approach. 
It was able to improve the prediction accuracy visible 
in all the model parameters, e.g., the RMSEP could 
be reduced by > 1.6 g/kg compared to the PLSR 
reference model. Similar results to the local PLSR 

were obtained by the k-means PLSR, but the running 
time of the k-means PLSR algorithm was reduced 
substantially, from 30.05 s to 4.52 s. The main reason 
that k-means PLSR significantly improves the speed 
of the algorithm operation is the relatively small 
number of clusters (four in this study). However, the 
local PLSR approach builds a prediction model for 

Table 4. The overall validation results for the reference model and the clustering approaches (No. of validation samples = 1 272)

Model performance Model data
R2 RMSEP (g/kg) rRMSEP RPD RPIQ LV time (s)

PLSR 0.6179 17.6007 48.8521 1.6179 1.7215 19 1.68
PLSR reference 0.7316 14.9927 11.4753 1.9303 2.7159 17 1.70
k-means PLSR 0.7553 14.6126 12.3967 2.0214 2.8442 17.5 4.52
Local PLSR 0.7557 13.3817 10.9486 2.0231 2.8466 17 30.05

PLSR – partial least squares regression; RMSEP – root mean squared error of prediction; rRMSEP – relative RMSEP; RPD – ratio 
of performance to deviation; RPIQ – ratio of performance to interquartile range; LV – latent variables; bold – optimal results

Figure 7. Observed vs. predicted soil organic carbon (SOC) values of the validation samples for the partial least squares 
regression (PLSR) reference and the clustering approaches
The colour represent the four k-means clusters; Pearson’s correlation coefficient r is given; PCA – principal component analysis
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each validation sample, which leads to about 1200 
different calibration subsets considered as clusters. 

Ramirez-Lopez et al. (2013) used a spectral-based 
learner to predict the SOC from the regional soil 
spectral library (R-SSL) of the State of São Paulo and 
the global soil spectral library (G-SSL). The results 
showed that the model prediction performance was 
R2 of 0.59 and RMSE of 0.25 g/kg in the R-SSL and 
R2 of 0.68 and RMSE of 0.8 g/kg in the G-SSL. Nocita 
et al. (2014) used a local regression model with the PLS 
distance and sand content as a covariates to achieve 
a high accuracy soil organic carbon prediction in the 
LUCAS 2012 database, with R2 of 0.84, RMSE of 3.6 g 
per kg, RPD of 2.5, and RPIQ of 2.3. Ward et al. (2019) 
used the local PLSR method for the SOC prediction 
based on the spectral data only in the LUCAS 2012 
database, with the R2 of 0.67, RMSE of 5.16 g/kg, 
RPD of 1.74, and RPIQ of 1.96. Previous studies have 
demonstrated that the prediction error of spectral 
models increases with an increasing standard devia-
tion of the predicted soil properties (Stenberg et al. 
2010; Nocita et al. 2014). Since the soil samples used 
in this paper differ from the above studies, model 
prediction performance metrics other than RMSE 
were compared. Comparing the results of our study 
with those of Ramirez-Lopez et al. (2013) and Ward 
et al. (2019), we found some improvement in the 
performance of the model in this paper. Although 
comparing our results with the results of Nocita et al. 
(2014), we found a slight decrease in the performance 
of the model in this paper. This is mainly because 
Nocita et al. (2014) improved the local regression 
process by including other covariates (geographical 
and texture information) in the calculation of the 
distance between samples and using PLS distances. 
The acquisition of covariate information can consume 
a lot of human, time, and financial resources, thus 
failing to reflect the characteristics of the hyperspec-
tral technology. In this paper, only spectral data are 
considered, thus reducing the input information for 
modelling and making it more general. Meanwhile, 
the prediction error of the SOC in this paper is within 
a reasonable range in a large-scale soil database.

As shown in Figure 7, the underestimation of higher 
SOC values is a well-known problem in PLSR model-
ling as shown in the results for the PLSR reference 
and clustering approach. The reasons for this are 
the skewed distribution of SOC content leading 
to under-representation of higher SOC values in the 
calibration set (Brown et al. 2005) and changes in 
the relationship between higher SOC values and 

the spectra due to saturation of the SOC spectral 
response (Nocita et al. 2014). 

CONCLUSION

We tested a k-means clustering algorithm that was 
based on a PCA of the spectra. The number of clusters 
of the k-means algorithm was determined by using 
hierarchical clustering instead of exhaustive enu-
meration, thus significantly reducing the algorithm 
runtime. Compared to the local PLSR approach, 
the k-means clustering method was able to reduce 
the algorithm runtime from 30.05 s to 4.52 s while 
achieving similar results. Compared with the local 
PLSR method, the k-means method can save 84.96% 
of the modelling time for the SOC prediction mod-
elling. Both approaches could improve the results 
of the PLSR reference model. We noted that the dis-
tribution of the SOC content in a large soil spectral 
library was severely skewed, which had a negative 
impact on the prediction accuracy. Therefore, it was 
essential to convert the highly skewed SOC content 
to an approximate normal distribution before the 
model calibration. 

With this study, we have taken a step forward 
in adapting the spectral soil model to the need for 
real-time SOC quantification. The results of this 
study show that: (i) it  is possible to  improve the 
SOC prediction by dividing the large soil database 
into smaller groups compared to the global model; 
(ii) compared with the local PLSR approach, the 
k-means clustering approach based on a PCA and 
hierarchical clustering achieved similar results while 
significantly improving the algorithm running speed.
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