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Abstract: The development and provision of soil spectral library (SSL) could facilitate the application of near infrared 
(NIR) spectroscopy for economical, accurate, and efficient determination of soil organic matter (SOM). In this work, 
the performances of partial least squares regression (PLSR) and convolutional neural network (CNN) combined with 
the datasets of Zhejiang provincial SSL (ZSSL) and the feature subset (FS) were compared for the prediction of SOM 
at the target field. The FS dataset was chosen from ZSSL based on similarity to the spectral characteristics of the target 
samples. The results showed that compared with modelling using ZSSL, modelling using FS can greatly improve the 
prediction accuracy of the PLSR model, but the impact on the performance of the CNN model was limited. The method 
of mean squared Euclidean distance (MSD) was an effective way for determining the optimal spiking sample size for the 
PLSR model only using the spectral data of the spiking subset and the prediction set. The PLSR model combined with 
the FS dataset and the spiking subset determined by MSD achieved the optimal prediction results among all developed 
models, which is an accurate and easy-to-implement solution for the SOM determination based on ZSSL.

Keywords: convolutional neural network; soil organic content; soil spectral library; spiking sample size; strategy 

Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant LY21D010007 and Grant LR22F010001, 
the Science and Technology Program of the China’s State Administration for Market Regulation under Grant 2022MK0364, 
and the Scientific Research Project of the Education Department of Zhejiang Province under Grant Y201737559, and the 
Zhejiang Provincial Emergency Management Science Research Institute Project under Grant 330000220130371007005.

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Soil organic matter (SOM) is one of the most im-
portant indicators of cultivated soil, which plays 
a core role in soil nutrient cycling and transforma-
tion, providing nitrogen, phosphorus, potassium and 
other nutrients required for crop growth. Quickly 
and accurately obtaining the content and distribution 
of SOM, so as to fertilize reasonably and accurately, 
is of great significance for the sustainable development 

of agriculture and the successful implementation 
of precision agriculture (Li et al. 2022). During the 
last two decades, near infrared (NIR) spectroscopy 
has been widely employed as an effective tool for 
the quantitative analysis of soil attributes with the 
advantages of fast detection speed, no pollution, low 
cost, and simple operation (Seidel et al. 2019; Li et al. 
2020; Davari et al. 2021). However, NIR spectroscopy 

https://www.agriculturejournals.cz/web/swr/


159

Soil and Water Research, 18, 2023 (3): 158–168 Original Paper

https://doi.org/10.17221/133/2022-SWR

is susceptible to interference from soil type, moisture 
content, surface roughness and the nature of the 
compounds. Soil spectral predictive mechanisms 
may vary from one sample set to another, resulting 
in poor generalization ability of the calibration model 
(Voland & Emmerling 2011; Jia et al. 2016; Munnaf 
et al. 2021). This greatly limits the popularization 
and application of the technology. In order to en-
hance the calibration model applicability, more and 
more researchers tend to utilize soil spectral library 
(SSL) for modelling, including globe scale, national 
scale and regional or  local scale (Guerrero et al. 
2016; Nawar & Mouazen 2017; Yang et al. 2020). 
On the one hand, it increases the coverage of soil 
sample information for modelling. On the other hand, 
economic losses and waste of natural resources due 
to repeated sampling are reduced.

Nevertheless, developing an accurate spectroscopy 
model using SSL remains a challenging task. The 
main reason is that the SSL usually contain a large 
amount of sample information with different spectral 
characteristics, resulting in the unique characteristics 
of SOM in the target field can not be appropriately 
reflected in the calibration (Tsakiridis et al. 2019). 
To prevent degradation in the accuracy from the ap-
plication of SSL-based models to local sample sets, 
two general strategies have been applied. One is to 
use a specified subset from the SSL for modelling 
which has similar spectral characteristics to the target 
soil samples. Seidel et al. (2019) selected 137 sam-
ples from the German SSL as a subset which were 
most similar to the target samples based on spec-
tral cluster analysis. They considered that model-
ling with this subset can significantly improve the 
performance of the calibration model. The other 
strategy is spiking, that is adding a small number 
of the target samples to the SSL, thereby enhancing 
the impact of the calibration model on the target 
samples (Gogé et al. 2014; Jiang et al. 2017; Knadel 
et al. 2017). The spiking samples require laboratory 
chemical analysis of soil attributes which are costly. 
Optimizing the number of the spiking samples is thus 
very important. The methods of Kennard-Stone (Ken-
nard & Stone 1969), fuzzy c-means (Havens et al. 
2012) and Latin hypercube (McKay et al. 1979) are 
commonly used for selecting spiking samples. How-
ever, the values of soil attributes need to be known 
to determine the optimal spiking number, which are 
inconvenient in actual applications. The method 
by analysing the mean squared Euclidean distance 
(MSD) is able to identify the spiking number only 

using the spectral data of the spiking subset and the 
target samples (Ramirez-Lopez et al. 2014). Li et al. 
(2022) argued that MSD was a simple and effective 
method to determine an adequate spiking set.

As the sample size in SSL increases, modelling 
between soil attributes and spectral data becomes 
increasingly complex. In recent years, convolutional 
neural network (CNN) has been widely employed 
in the field of big data processing, such as image 
classification (Wang et al. 2022), speech recognition 
(Mustaqeem & Kwon 2021), natural language process-
ing (Hong et al. 2022), etc. With the characteristics 
of local connection and weight sharing, the CNN 
model can automatically identify and extract spectral 
characteristics from the original spectral data (Pa-
darian et al. 2019). Several studies have successfully 
applied CNN for regression modelling using NIR 
spectroscopy data (Ng et al. 2020; Tsakiridis et al. 
2020). The results showed that it has the capability 
to outperform PLSR for the prediction of various soil 
attributes. However, these conclusions are obtained 
based on the modelling of a large number of samples 
(> 10 000) in the SSL. When using a specified subset 
from the SSL for modelling or the SSL sample size 
is not large enough, the advantage of using CNN 
is uncertain. 

Against the backdrop of the above research, this 
work aims to use the SSL of Zhejiang Province, 
P.R. China (ZSSL) to quantitative analysis SOM 
content in a target field for long-term soil fertility 
monitoring. In this work, the main objective is to 
investigate which strategy (feature subset, spiking, 
or a combination of both) is adopted without con-
ducting laboratory chemical analysis of the target 
farmland SOM, and which method (PLSR or CNN) 
can be used to achieve accurate prediction of the 
target field SOM based on ZSSL.

The innovation points of this paper are as follows: 
First, using MSD method to determine the optimal 
spiking sample size based on spectral data only, thus 
reducing the workload of laboratory chemical analysis 
and improving the cost-effectiveness of NIR spec-
tral detection. Secondly, based on ZSSL, it provides 
a low-cost and rapid solution measurement of SOM. 

MATERIAL AND METHODS

Soil spectral library and target field. Zhejiang 
Province is located on the southeast coast of China, 
with an area of 105 500 km2. The distribution map 
of sampling locations is shown in Figure 1A. Each 

https://www.agriculturejournals.cz/web/swr/


160

Original Paper Soil and Water Research, 18, 2023 (3): 158–168

https://doi.org/10.17221/133/2022-SWR

point in Figure 1A represents the location of sampling 
points in a certain district of Zhejiang Province. There 
will be a different number of experimental fields 
in each sampling location. Different amounts of soil 
samples will be collected based on factors such as soil 
types and planting crops in different experimental 
fields. Finally, the total number of soil samples used 
in the ZSSL database for this study is 2 069. The soil 
samples were chosen from the topsoil (0–20 cm) 
during 2012–2021 and covered the main soil types 
of Zhejiang Province, such as paddy soil, red loam, 
yellow loam, moisture soil, coastal saline soil and 
so on. The target field was located in  long-term 
cultivated farmland (30°11'N, 120°48'E) in Shangyu, 
Zhejiang Province, covering an area of 15.2 km2, 
shown in Figure 1B. The main soil type is paddy soil. 
The field crops are generally rice, vegetables, soybeans, 
and potatoes. In various types of soils in Zhejiang 
Province, the primary minerals commonly occur are 
quartz and potassium feldspar, and the secondary 
minerals are illite. In general, the soil texture of red 
loam is clay loam, with kaolinite as the main clay 
mineral, followed by illite. The soil texture of yellow 
loam is generally silty loam or clay loam, and the clay 
minerals are mainly vermiculite, chlorite, and kaolin-
ite, accompanied by illite and quartz. Compared with 
other types of soil, the content of secondary mineral 
illite in moisture soil, coastal saline soil, and various 
paddy soils significantly increased, while the content 
of montmorillonite, kaolinite, and chlorite slightly 
increased, with the occurrence of magnesium con-
taining mineral vermiculite dolomite. In 2020, with 

the help of the land development centre of the target 
district, 120 topsoil samples were collected from this 
target field. The minimum spacing between sampling 
points is 100 meters. At each sampling point, collect 
5 soil samples according to the “plum blossom method”, 
with a sampling depth of 0–20 cm. Then mix the 
5 soil samples evenly, pick out the straw and stones, 
lay them flat into a square and draw two diagonal 
lines. Take the two opposite pieces and discard the 
rest. Repeat the above operation until the required 
amount (about one kilogram) is obtained and use 
them as a soil sample for the experiment.

Spectral analysis and chemical analysis. The 
soil samples from the ZSSL and the target field 
were air-dried and sieved to pass through a < 2 mm 
mesh. The diffuse reflectance spectra were measured 
by a Fourier-type NIR spectrometer (Matrix-I, Bruker 
Optics Inc., Germany) under laboratory conditions. 
Absorbance, as log1/R where R is reflectance, was 
recorded in the wavelength range of 1 000 to 2 500 nm 
for a total of 1 555 wavelength variables per spectrum, 
with a spectral resolution of 8 cm–1. For preprocess-
ing, the spectra were first smoothed by averaging five 
successive wavelengths. Then, standard normalized 
variate (SNV) was used to reduce baseline offset and 
noise of the spectra. The pre-processed spectra were 
used for further analysis.

Chemical analyses of SOM content (g/kg) were 
performed by the agricultural testing centre of Zhe-
jiang Provincial Academy of Agricultural Sciences. 
The content was measured colourimetrically after 
H2SO4-dichromate oxidation at 150 °C.

Figure 1. The sampling locations of the soil spectral library of Zhejiang Province and the feature subset (A) and the 
sampling points of the target field (B)
ZSSL – soil spectral library of Zhejiang Province

(B)

Sampling points
ZSSL without feature subset
Zhejiang province

Feature subset
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Modelling methods. Partial least squares regres-
sion (PLSR) is one of the most widely used algo-
rithms for modelling soil NIR spectroscopy. It  is 
a linear regression model that projects spectra into 
latent variables explaining the variances within the 
spectra and the response variables. The optimum 
number of latent variables for PLSR models is de-
termined by minimization of the root mean square 
error of cross-validation after leave-one-out cross-
validation.

The CNN model consists of several convolutional 
layers, pooling layers, and fully-connected (or dense) 
layers. In the convolutional layer, the 1-dimension 
depth-wise convolution structure was used to filter 
a given input and extract different local features from 
the input spectrum. The convolution operation can 
be expressed as follows:

 	  

where:
yk

i	 – the ith feature map on the kth layer;
xj

k–1	 – the jth input feature map on the k–1th layer;
wk
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scaling the activations to prevent the internal covari-
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was applied as the activation function. Then, the 
max pooling layer was adopted to reduce the risk 
of overfitting by providing a more abstract repre-
sentation of a layer. The fully-connected layer was 
used to connect all outputs of the previous layer 
to all inputs of the next layer. The CNN module hy-
perparameters are summarized in Table 1. Figure 2 
depicts the overall network architecture.

To train the CNN model, the calibration set was 
divided into two parts based on the five-fold cross-
validation technique. The training set accounted for 
80% samples was used to tune the model parameters. 
The validation set accounted for 20% samples was 
used evaluate the model accuracy. The root mean 
square error between the measured and predicted 
values of SOM was applied as the loss function. 
During the training stage, the weights of the model 
were adjusted based on the Adam optimizer with 
an initial learning rate of 0.001. The mini-batch sizes 
and the maximum number of training iterations were 
set to 32 samples and 400 epochs respectively. The 
training was stopped if no improvement in the ac-
curacy of the loss function occurred, or the number 
of the training epochs reached the maximum. The 
CNN model was implemented in Matlab2019 Deep 
Learning Toolbox (Mathworks Co., MA., USA).

Modelling strategies. Since the dataset of ZSSL 
covered a large amount of soil information which 
might not share edaphic characteristics with the targe 
field samples, the feature subset (FS) was chosen 
from ZSSL for modelling based on spectral similarity 
metrics. The steps for the determination of FS were 
as follows. First, principal component analysis (PCA) 
was performed on the ZSSL samples and the target 
field samples. The number of principal components 

Table 1. Hyperparameter settings of the convolutional neural network (CNN) model

Type Kernel size Filters Output size Activation
Convolutional + batch norm 8 8 1 548.8 RELUs
Max-pooling 2 – 774.8 –
Convolutional + batch norm 8 16 767.16 RELUs
Max-pooling 2 – 383.16 –
Convolutional + batch norm 8 32 376.32 RELUs
Max-pooling 2 – 188.32 –
Convolutional + batch norm 8 64 181.64 RELUs
Flatten – – 11 584.1 –
Fully-connected – 32 1.32 ReLUs
Fully-connected – – 1 linear

RELUs – rectified linear units
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(PCs) was determined according to the threshold 
of explained variance (≥ 99%). Then, for each soil 
sample in the target field, 50 samples from ZSSL were 
selected according to the minimum Mahalanobis 
distance in the PC feature space of the combined 
ZSSL and target sample spectra. Finally, the repeat-
edly selected samples were removed to form FS, and 
the total number of soil samples used for this study 
in the FS database is 174.

Out of  the 120 samples of  the target field, up 
to 30 samples were randomly selected to spike the 
initial calibration models. To evaluate the optimal 
number of spiking samples, 10 to 30 samples were 
randomly selected as a spiking subset with a step 
of 5 samples. For each spiking subset, Gaussian kernel 
density estimates of the probability density function 
were calculated based on the first PC of the spec-
tral data, which were called as Ps. Then, Gaussian 
kernel density estimates of the probability density 
function of the prediction set were calculated in the 
same way, which were called as Pv. Finally, the mean 
squared Euclidean distance (MSD) between Ps and 
Pv was calculated. According to the MSD, the op-
timal spiking subset was determined. The detailed 
description of the MSD can be found in Ramirez-
Lopez et al.(2014).

In this work, the methods of PLSR and CNN com-
bined with the datasets of ZSSL and FS were utilized 
to establish calibration models for the prediction 
of SOM in the prediction set. The established models 
were denoted as ZSSL_PLSR, ZSSL_CNN, FS_PLSR 

and FS_CNN, respectively. After subtracting the 
spiking samples, there were 90 samples left in the 
target field, which were used as the prediction set. 
Because the ZSSL dataset was much larger than the 
FS dataset, in order to balance the leverage of the 
spiking samples between ZSSL and FS, the spiking 
samples added to the ZSSL were extra-weighted 
by a copy of λ, then the number of spiking samples 
in the ZSSL would become the original λ times. In this 
study, the spiking samples added to the ZSLL were 
extra-weighted by λ = 12, which was approximately 
equal to the ratio of the number of samples in the 
ZSSL dataset (2 069) to the feature set FS (174). 
The root mean squared error of prediction in the 
prediction set (RMSE), the bias and the coefficient 
of determination (R2) have been applied to evaluate 
the prediction accuracy. Generally, large value of R2 
and small values of bias and RMSE indicate good 
predictions.

RESULTS AND DISCUSSION

Statistical analysis and soil spectral charac-
teristics. Table 2 summarizes the SOM content for 
each dataset used for calibration and prediction, 
and Figure 3 shows the distribution of SOM values 
in the core datasets.

The ZSSL dataset covered the largest range (2.4 to 
96.5 g/kg) and variation of SOM content, but the 
mean value was the lowest (26.0 g/kg). Derived from 
ZSSL based on spectral similarity to the target field 

 

Figure 2. The architecture of the CNN model 
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samples, the FS dataset still covered a larger range 
than the prediction set. Compared with ZSSL, the 
range and the mean value of SOM content of the 
FS dataset were much closer to those of the predic-
tion set. The SOM distribution of the spiking subset 
was comparable to the prediction set. 

Figure 4A showed the averaged spectrum of each 
dataset in the range of 1 000–2 500 nm with simi-
lar trends. The significant peaks around 1 400 and 
2 000 nm were attributed to the absorption of water 
in the soil, while the crests around 2 200 nm were 
related to the absorptions of clay minerals (Viscarra 
Rossel & Behrens 2010). The absorbance of the aver-
aged ZSSL spectrum was slightly lower than those 
of the other three datasets which may be caused 
by the overall lower SOM content. The score plot 
of each dataset sample in the spectral feature space 
of the first two PCs was shown in Figure 4B. The two 
leading principal components accounted for 97.5% 
of the total variations. As can be seen, the ZSSL 
dataset exhibited the greatest spectral variability and 

covered most parts of the scores of the prediction 
set and spiking subset. The samples whose scores 
located around the prediction set and spiking subset 
were selected as the FS dataset, which had much less 
variation than the ZSSL dataset. 

The optimal number of spiking samples. Fig-
ure 5A showed the density distributions of the prob-
ability density function for the spiking subset and 
the prediction set, which were determined by the 
PC1 of the spectral data. As the spiking samples 
were randomly selected from the target field, the 
density distributions between the spiking subset 
and the prediction set did not exhibit regularity 
as the sample size increased. This irregularity also 
occurred in the MSD variations, seen in Figure 5B. 

Table 2. Statistics of soil organic matter for each soil dataset

Dataset n
Min Max Mean SD

(g/kg)
ZSSL 2 069   2.4 96.5 26.0 11.5
Feature subset 174   9.1 68.7 29.5 10.2
Prediction set 90 14.5 48.2 32.9   8.5
Spiking subset 30 13.4 56.2 33.9   8.7

ZSSL – soil spectral library of Zhejiang Province; n – number 
of samples; SD – standard deviation

Figure 3. The distribution of  soil organic matter (SOM) 
values in the core datasets
ZSSL – soil spectral library of Zhejiang Province

Figure 4. Mean spectra of the different datasets (A) and score plot of the two leading principal components (PC) of the 
spectra data with points coloured and shaped according to the different datasets (B)
ZSSL – soil spectral library of Zhejiang Province; FS – feature subset
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Figure 5A showed that when the number of spiking 
samples is 25, the density distribution of the spiking 
subset is most similar to the prediction set. In ad-
dition, by calculating the MSD between the density 
estimates of the spiking subset and the prediction 
set, it was found that when the number of spiking 
samples increased from 10 to 30, the MSD reached its 
minimum value when the number of spiking samples 
was 25, as shown in Figure 5B. It means that the subset 
of 25 samples performed better in terms of the rep-
lication of the density distribution of the PC1 in the 
prediction set than the other subsets. In general, 
a good spiking subset needs to ensure both a good 
coverage of the predictor space and a good replica-
tion of the distribution of the predictor variables 
(Ramirez-Lopez et al. 2014; Li et al. 2022). Therefore, 
the spiking subset of 25 samples was considered to be 
the best representative of the prediction set.

The above method to determine the optimal number 
of spiking samples by MSD can avoid the chemical 
analysis of soil samples in advance to determine 
their SOM values, thus effectively improving the 
cost-effectiveness of NIR spectral detection.

Evaluation of the established models without 
spiking. The calibration models provided differ-
ent prediction results for SOM using the datasets 
of ZSSL and FS without spiking, listed in Table 3. 
The performances of the models established based 
on the dataset of FS were better than those built 
from the dataset of ZSSL in terms of higher R2 and 
lower RMSE values, especially for the PLSR models. 
This is mainly due to the large differences in spec-

tral characteristics for the ZSSL samples, resulting 
in the inability to adequately characterize the unique 
spectral characteristics of SOM in the prediction 
set. Compared with the ZSSL dataset, the spectral 
characteristics of the FS dataset were much closer 
to the prediction set, and the variabilities were smaller 
than those of ZSSL (seen in Figure 4B), which made 
it easier for the FS-based models to  identify the 
spectral characteristics of SOM in the prediction set. 
Araújo et al. (2014) and Shi et al. (2014) obtained 
similar conclusions. They both considered that it was 
necessary to select feature dataset from the SSL for 
modelling, so as to improve the prediction accuracy.

The performance of CNN was better than that 
of PLSR when using ZSSL for modelling. When the 
sample size was large, the spectral data presented 

Figure 5. Density distributions for the spiking subsets and the prediction set based on the first principal component (PC)  
of the spectral data (A) and the mean squared Euclidean distance (MSD) between the density estimates of the spiking 
subsets and the prediction set (B)

Table 3. Comparison of prediction results using different 
calibration models

Models n R2 RMSE Bias
(g/kg)

ZSSL_PLSR 2 069 0.69 4.69 0.55
ZSSL_CNN 2 069 0.73 4.44 0.45
FS_PLSR 174 0.80 3.76 –0.31
FS_CNN 174 0.74 4.31 –0.43

ZSSL – soil spectral library of  Zhejiang Province; PLSR – 
partial least squares regression; CNN – convolutional neural 
network; FS – feature subset; R2 – coefficient of determina-
tion; RMSE – root mean squared error of prediction in the 
prediction set
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more and more nonlinear information. By adopting 
different convolution structures and learning rules, 
CNN can automatically perceive the local information 
in spectral data and obtain the characteristic informa-
tion of SOM, avoiding the complex feature extraction 
and data reconstruction process in PLSR. However, 
the advantage of CNN on a small number of samples 
was minimal, as it required lots of data to train the 
parameters. When the FS dataset was adopted for 
modelling, the prediction accuracy of CNN was weaker 
than that of PLSR. The conclusion was supported 
by Ng et al. (2020). They utilized NIR spectroscopy 
for the prediction of soil organic carbon and inves-
tigated the effect of the training sample size on the 
prediction accuracy of CNN and PLSR. The results 
showed that at a lower number of samples (< 1 000), 
PLSR performed better than CNN. When the sam-
ple size exceeded 2 000, the performance of CNN 
outweighed PLSR. Padarian et al. (2019) obtained 
a similar conclusion and argued that the efficiency 
of the CNN model increased with the sample size.

Evaluation of the established models with spiking 
and extra-weighted. The calibration models provided 

different prediction results for SOM using the datasets 
of ZSSL and FS with different numbers of spiking 
samples, showed in Figure 6. It is worth noting that 
the spiking samples added to the ZSSL were extra-
weighted by a copy of 12, which was approximately 
equal to the ratio of the number of samples in the 
ZSSL dataset and the feature set. As can be seen, 
when the spiking number was greater than 15, the 
RMSE values of ZSSL_PLSR and FS_PLSR decreased 
first and then increased slowly. They both achieved 
the lowest RMSE values when the spiking number 
was 25. The RMSE values of ZSSL_CNN and FS_CNN 
decreased gradually along with the increase of the 
spiking number over the entire range. The indicators 
of R2 showed the corresponding trends with RMSE, 
while the indicators of bias demonstrated similar pat-
terns to RMSE when the spiking number was 15–30.

Compared with the calibration models without 
spiking (Table 2), the models with spiking samples 
of more than 20 with and without copies had larger 
values of R2, and lower values of RMSE and bias, 
which showed that the strategies of spiking and extra 
weighting with copies were efficient. After adding 

Figure 6. The prediction results of the coefficient of deter-
mination (R2) (A), root mean squared error (RMSE) (B) 
and bias (C) from the calibration models using different 
number of spiking samples
ZSSL – soil spectral library of  Zhejiang Province; PLSR – 
partial least squares regression; CNN – convolutional neural 
network; FS – feature subset
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the spiking samples, the prediction models can better 
adapt to the characteristics of soils in the target field, 
thus improving the prediction ability of the model. 
Hong et al. (2018) found similar results that the ac-
curacy of the prediction models could be improved 
after adding the spiking samples of the target area 
to the original calibration model and re-modelling. 
Therefore, in the actual work, how to determine the 
optimal number of spiking samples is very important.

Seidel et al. (2019) adopted the Kennard-Stone 
algorithm to select up to 30 samples from each of the 
two target fields as the spiking samples according 
to the maximum difference principle of Mahalanobis 
distance of the spectral data. By comparing the model 
performance under different spiking sample sizes, 
it was found that an optimal spiking sample size 
of 15–20 can achieve a good prediction of SOM in the 
target fields. However, these methods of determining 
the optimal size of spiking samples by comparing the 
performance of prediction models under different 
numbers of spiking samples require the physical and 
chemical values of all spiking samples. Therefore, 
when making choices with a large number of spiking 
samples, it will bring a lot of laboratory chemical 
analysis and measurement work.

In this study, we adopted the MSD method to de-
termine the optimal number of spiking samples as 25 
only through the spectral data of the prediction set 
and spiking subset. Compared with the calibration 
models without spiking (Table 3), both the ZSSL_PLSR 
model and the FS_PLSR model obtained the best pre-
diction results with 25 spiking samples. It indicated 
that the MSD method can provide some useful help 
for selecting the optimal number of spiking samples, 
which can reduce the workload of laboratory analysis 
relatively, and improve the prediction ability of the 
model through spiking.

Among all developed models, the FS_PLSR model 
achieved the best prediction accuracy at each spiking 
number and outperformed the ZSSL_PLSR model 
by a large margin. When the number was 25, the optimal 
prediction results were obtained with R2 value of 0.86, 
RMSE value of 3.17 g/kg, and bias value of 0.21 g per 
kg for SOM. However, the performance of FS_CNN 
has not been effectively improved compared with 
ZSSL_CNN, although the spectral characteristics 
of FS were much closer to the prediction set than 
those of ZSSL. Furthermore, when the spiking sam-
ple size was greater than 25, the ZSSL_CNN model 
performed better than that of FS_CNN due to larger 
values of R2 and smaller values of RMSE. The results 

indicated that modelling with the FS dataset was ef-
fective for improving the performance of the PLSR 
model, but the impact on the performance of the 
CNN model was limited.

The RMSE and bias trends of ZSSL_PLSR and 
FS_PLSR (Figure 6B and C) were similar to that 
of MSD (Figure 5B), and all of them obtained the low-
est values at the spiking number of 25, which showed 
that 25 was the optimal spiking sample number. The 
results indicated that the method of MSD was feasible 
for the determination of the spiking sample size for 
the ZSSL_PLSR and FS_PLSR models. However, for 
the ZSSL_CNN and FS_CNN models, the method 
of MSD was invalid. The larger the spiking sample 
size, the higher the prediction accuracy of ZSSL_CNN 
and FS_CNN. The FS dataset selected samples based 
on the similarity to the spectral characteristics of the 
prediction set, while MSD determined the spiking 
sample size based on the similarity to the spectral 
density distributions of the prediction set. Compared 
with the CNN-based models, the PLSR-based models 
can better utilize these spectral similarity information 
for the prediction of SOM. For CNN, how it works 
remains largely a mystery, as it is hidden in layers 
of computation. Large amounts of training data can 
better reflect the advantages of this method.

CONCLUSION

In this work, the ZSSL dataset and the FS dataset 
which were chosen from ZSSL based on the similarity 
to the spectral characteristics of the prediction set were 
used for the prediction of SOM in the target field. The 
comparison among different strategies and methods 
allowed the following conclusions to be drawn.

First, compared with calibration using the ZSSL 
dataset, calibration using the FS dataset can greatly 
improve the prediction accuracy of the PLSR-based 
models, but the impact on the performance of the 
CNN-based models was limited. 

Second, compared with the calibration models with-
out spiking, spiking and extra weighting with copies 
were efficient for improving the prediction accuracy.

Third, the MSD method was an effective way for 
determining the optimal spiking sample size for the 
PLSR-based models only using the spectral data.

Fourth, the performance of CNN was better than 
that of PLSR when using ZSSL for modelling. When 
the FS dataset was adopted for modelling, the perfor-
mance of CNN was weaker than that of PLSR. The 
advantages of CNN mainly focused on processing 
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big data. The FS_PLSR model achieved the best 
prediction performance for SOM compared with the 
models of ZSSL_PLSR, ZSSL_CNN, and FS_CNN 
at each spiking number. 

Therefore, when using NIR technology to detect 
SOM in a new target area, it is not necessarily nec-
essary to base on large-scale SSL or conduct a large 
amount of chemical analysis on the spiking samples 
of the target area. Instead, it is possible to effectively 
predict SOM in the new target area based on the FS 
that is similar to the spectral characteristics of the 
prediction set and adding the optimal spiking samples 
determined by the MSD method.
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