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Abstract: Soil particle-size distribution or soil texture presents one of the most important physical properties. There are various 
systems of the classification systems for soil particle-size fractions with different boundaries. Our effort was concentrated on the 
mathematical approach to evaluate the existing data and convert it  to the form of a  reconstructed cumulative particle-size 
curve which will allow reading concentration of any desired particle size. Non-Uniform Rational B-Splines (NURBS) curves 
therefore represent a generalization of B-splines and Bézier curves by extending the definition by an element of rationality, 
which is represented by the weights of the control points, and a nodal vector of parametrization, which represents the element 
of uniformity. The NURBS curve was used for smooth (depending on the degree of the curve used) and as tight as possible 
approximation of the arranged control points, the connecting lines of which forms a convex envelope for its individual parts. 
The NURBS approximation curve is therefore determined by the ordered control points and their connecting lines, the weights 
of these points, the degree of the curve and the nodal vector of parametrization. However, the construction of the approxima-
tion curve is primarily dependent on a limited number of points of the experimentally determined particle-size distribution 
curves, and for curves with significant breaks in the course, one must consider either a lower accuracy of the approximation 
or the necessity of “improving” the approximation using the weights of individual points, inserting additional points or working 
with a nodal vector of parametrization. For basic approximation, the PUGIS system (Czech soil information system) offers au-
tomatic approximation using all variants mentioned in the article as well as the possibility of individual changes in the weights 
of control points, in their number and position, and in the nodal vector of parametrization.

Keywords: data harmonization; legacy soil database; mathematical approach; soil particles cumulative curve restora-
tion; soil texture

Soil consists of an assemblage of particles that differ 
widely in size and shape. Soil texture is considered 
as one of the most important features of soil. The term 

soil texture is an expression of the dominant parti-
cle sizes, or the proportion of particle-size fractions 
found in soil and has both qualitative and quantitative 
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connotations. The classification of the particle-size 
fractions is shown in Table 1 in which the system 
suggested and used by Jahn et al. (2006) is given.

Particle-size fractions are measured in intervals 
of orders of magnitude with the steps from 2 to 6.3 
and 20, as the very large particles size ranges from 
> 200 mm to < 0.0002 mm can only be represented 
logarithmically, and 6.3 divides the range of 2–30 on the 
logarithmic scale in equal parts (Blum et al. 2018). 
Nevertheless, there are other systems for particle-size 
fraction classification with different boundaries, for 
example USDA Soil Taxonomy (Soil Survey Staff 1999). 

Cumulative particle-size distribution curves are 
used very often for textural composition descrip-

tion. Examples of such curves are given in Figure 1 
(Blume et al. 2016). There are many methods for 
determination of soil texture. A very good overview 
of them was published by Pansu and Gautheryou 
(2003). Morais et al. (2019) published an innovative 
contribution based on predicting soil texture using 
image analysis.

Frequently, there is a problem based on the evalua-
tion of large databases of legacy data where different 
determination methods and different classification 
systems were used. Zádorová et al. (2018, 2020) tried 
to solve that problem. The authors tested several mod-
els, finally a simple logarithmic-linear transformation 
appeared to provide the best results. Previously there 

Table 1. Classification and characterization of the particle-size fractions (Jahn et al. 2006)

Equivalent diameter
Denomination Symbol Basic division

(mm) (μm)
≥ 200 boulders

coarse fraction
200–63 stones
63–20 coarse gravel
20–6.3 medium gravel
6.3–2 fine gravel

2–0.063
2 000–630 coarse sand

sand S

fine earth fraction

630–200 medium sand
200–63 fine sand

0.063–0.002
63–20 coarse silt

silt Si20–6.3 medium silt
6.3–2.0 fine silt

< 0.002
2.0–0.63 coarse clay

clay C0.63–0.2 medium clay
< 0.2 fine clay

Figure 1. Cumulative particle-size distri-
bution curves for fine earth for several 
soils, namely sand (Ss), loess (Ut), glacial 
loam (Ls), and clay rich mud (Tu) (Blume 
et al. 2016)Particle diameter
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was also an attempt published by Němeček et al. 
(2011) based on a simple linear regression between 
clay fractions with different boundaries. The aim 
of this paper is to show a solution to this problem 
using the NURBS (Non-Uniform Rational B-Splines) 
curves (Piegl & Tiller 1997).

METHODOLOGY

Our effort was concentrated on the mathematical 
approach to evaluate the existing data and convert it to 
a reconstructed cumulative particle-size distribution 
curve which will allow the read the concentration 
of any desired particle size, using the NURBS curve 
with some modifications.

In the mathematical part of our work the publica-
tion by Piegl and Tiller (1997) was used.

Theory
NURBS curve and its construction

NURBS curves represent a generalization of B-
splines and Bézier curves by extending the definition 
by an element of rationality, which is represented 
by the weights of the control points, and a nodal vec-
tor of parametrization, which represents the element 
of uniformity. The NURBS curve is used for smooth 
(depending on the degree of the curve used) and 
as tight as possible approximation of the arranged 
control points, the connecting lines of which forms 
a convex envelope for its individual parts.

The NURBS approximation curve is therefore de-
termined by the ordered control points and their 
connecting lines, the weights of these points, the 
degree of the curve and the nodal vector of para-
metrization.

Definition of a NURBS curve
For:

m + 1 control points P,
m + 1 of positive real numbers w called weights,
the degree of the curve n,
curve order k = n +1 
and nodal vector of parametrization t = (t0, t1, ..., 
tn+m+1) 
A NURBS curve is defined by the equation:

	
 (1)
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The parametrization vector is represented by any 
non-decreasing sequence of values satisfying the 
following conditions.

(1) The sequence of values in the nodal vector 
of parametrization must be non-decreasing. There-
fore, for the values of the components of the nodal 
vector of parametrization:

ti ≤ ti+1 	  (3)

(2) The number of values of the nodal vector of para-
metrization u is equal to the sum of the number 
of control points m + 1 and the degree n of the curve 
increased by one.

u = m + 1 + n + 1 	  (4)

It was called a nodal vector of parametrization 
uniform if the intervals between the individual com-
ponents of the vector are the same. If the intervals 
are not the same, it is a non-uniform vector.

To approximate the particle-size distribution curve, 
it was required that the resulting approximation 
curve passes through the extreme control points. 
For achieving this, in the case of a uniform B-spline 
curve, by inserting the same n endpoints at the begin-
ning and end of the sequence of control points. For 
a non-uniform B-spline curve, it could achieve the 
same effect by modifying the nodal vector of para-
metrization by inserting multiple n + 1 nodes.

To simplify the design of the approximation curve, 
it was considered the unit weights of all control points 
of the control polygon and work with a uniform nodal 
vector of parametrization. Given that the resulting 
approximation curve may not, in this standard setting, 
meet the requirements of the solver, it is necessary 
to consider the possibilities of influencing its shape.

The shape of the resulting approximation curve 
is generally determined by the chosen degree of the 
curve n, the weights of individual control points wi 
and the distances ti+1 − ti in the nodal vector of para-
metrization. To simplify the design of the weights 
of individual control points or distances in the nodal 
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vector of parametrization, it could be used geometric 
methods that are inspired by minimizing the sum 
of the distances of the points of the approximation 
curve from a given fixed point. In this case, the fixed 
points are the centers of gravity of the partial control 
polygons. It was called the method of determining 
the weights of control points or determining dis-
tances within the nodal vector of parametrization, 
the center of gravity method.

Center of  gravity method for determining the 
weights of control points

For the control polygon defined by the control 
points (Pi)m

i=0, the centroids of  individual partial 
control polygons Ti are defined by the equation:

                     , i = 0, ..., m − n 	  (5)

The centroid weights of the individual control 
points forming the control polygon are defined 
as follows:

                         , i < n 	  (6)

                            , n ≤ i ≤ m − n 	  (7)

                                , i > m − n 	  (8)

The centroid weight wi of  the control point Pi 
is therefore equal to the average distance of the con-
trol point from the centroids of all partial control 
polygons in which the point Pi participates in the 
construction of the approximation curve.

Center of  gravity method for nodal vector of 
parametrization determination

In addition to determining the weights of individual 
control points, the shape of the resulting approxi-
mation curve can be influenced by the design of the 
nodal vector of parametrization, which is again based 
on the geometric properties of the control polygon 
defined by the control points (Pi)m

i=0.
This method is based on the position of the cen-

troids of partial control polygons:

            ,  i = 1, ..., m − n 	  (9)

With n + 2 control points, which define two adjacent 
segments of the curve connected in node ti of nodal 
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vector of parametrization and thus considers the 
position of control points. The nodal vector of para-
metrization, determined by the center of gravity 
method, is called the center of gravity nodal vector 
of parametrization.

For the control polygon defined by the control 
points (Pi)m

i=0 and the degree of the curve n, the cen-
troids of the individual sub-polygons Ti are defined 
by the equations:

T0 = P0

                      , i = 1, ..., m − n 	  (10)

Tm−n+1 = Pm

The distances of successive centroids are then 
defined by the equation:

li = |Ti−1Ti|, i = 1, ..., m − n + 1

and the sum of all centroid distances:

 	  (11)

The center of gravity nodal vector of parametri-
zation for the approximation curve is then given 
by the equations:

ti = 0, i = 0, ..., n

                , i = n + 1, ..., m − n – 1 	  (12)

ti = 1, i = m − n, ..., m

The algorithm for calculation of basis B-spline 
functions in PL/SQL (Oracle database procedural 
language) is presented in the Supplementary Mate-
rial 1 in Electronic Supplementary Material (ESM).

Examples of B-spline basis functions for different 
degrees of NURBS

Examples of B-spline basis functions for different 
degrees of NURBS are shown in Figure 2. Curves 
were calculated as follows.
Number of control points: m + 1 = 5 
Curve order k = 2 (for linear B-spline) and nodal 

vector of parametrization t = (0, 0, 1, 2, 3, 4, 4) 
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Curve order k = 3 (quadratic B-spline) and nodal 
vector of parametrization t = (0, 0, 0, 1, 2, 3, 3, 3) 

Curve order k = 4 (cubic B-spline) and nodal vec-
tor of parametrization t = (0, 0, 0, 0, 1, 2, 2, 2, 2) 

Application 
Approximation of  the particle-size distribution 
curve by the NURBS curve

The particle-size distribution curve expresses the 
cumulative relative proportion of individual particle 
size fractions, given by their share in the total mass 
of the soil sample. The curve is given for the parti-
cle size in a logarithmic scale, which allows a more 
detailed view of the particle sizes for fine fractions 
that significantly influence soil properties.

For the approximation of the particle-size distribu-
tion curve, it was started with the logarithmic display 

of the particle-size distribution curve. The sorted nodal 
points of the curve stored in the database as a control 
sequence (control points) were used. The sequence 
of control points forms a convex envelope of the re-
sulting approximate NURBS curve, which we will 
use with advantage to ensure the character of the 
particle-size distribution curve as a summation line. 
The approximation curve passes through the extreme 
points of the sequence (secured by the construction 
of the nodal vector of parametrization) and the ap-
proximation curve approaches the “inner” points of the 
particle-size distribution curve depending on the slope 
ratios between adjacent sections of the particle-size 
distribution curve. For closer approximation, the re-
sulting curve must be “pulled” to the original particle-
size distribution curve. This can be achieved either 
by designing a non-equidistant nodal vector of para-

Figure 2. B-spline basis functions of the: 1st de-
gree and nodal vector of parametrization t = 
(0,0,1,2,3,4,4) (A), 2nd degree and nodal vector 
of  parametrization t = (0,0,0,1,2,3,3,3) (B), 
3rd degree and nodal vector of parametrization 
t = (0,0,0,0,1,2,2,2,2) (C)
N1, N2, N3, N4, and N5 – No. of points
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metrization, by weighting individual control points 
or by inserting intermediate values into the sequence 
of control points. To approximate the particle-size 
distribution curve, it was used the experimentally 
determined points of the curve, where the particle 
size d is considered on a logarithmic scale.

To test different approaches to approximate particle-
size distribution curves, two measured particle-size 
distribution curves were used (Table 2). Datapoints 
of curve A were used for following Examples 1–4, 
and datapoints of curve B were used for Examples 
5–8. Various scenarios, i.e., Examples, are discussed 
together with their results in the following part.

RESULTS AND DISCUSSION

Example 1 – Control points from particle-size 
distribution curve in logarithmic scale with uni-
form weight

Control points Pi for A particle-size distribution 
curve and their weights (for simplicity, we consider 
the same weight for all control points: w = 1) are 
presented in Table 3.

Uniform nodal vector of parametrization
To simplify the example, a uniform nodal vector 

of parametrization was considered.

For the individual degrees of the approximation 
curve considered (where we proceed from the con-
dition that the degree of the approximation curve 
must be smaller than the number of sections of the 
approximated polygon) n < m, we get the following 
parametrization vectors:

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 5 control points:

t = (−3, −3, −2.1747, −1.3495, −0.5242, 0.3010, 0.3010)

For a curve of the 2nd degree (3rd order) – (quad-
ratic B-spline) and a sequence of 5 control points:

t = (−3, −3, −3, −1.8997, −0.7993, 0.3010, 0.3010, 0.3010)

For a curve of the 3rd degree (4th order) – (cubic 
B-spline) and a sequence of 5 control points:

t = (−3, −3, −3, −3, −1.3495, 0.3010, 0.3010, 0.3010, 0.3010)

Resulting approximation curves are shown together 
with the control point in Figure 3. Points of  the 
approximation curves are also shown in Table S1 
in ESM. Differences between the control points and 
the points of the approximation curves are shown 
in Table 3. The difference between the points of the 

Table 2. Experimentally determined points of the particle-size distribution curves A (Examples 1–4) and B (Examples 5–8).

A particle-size distribution B particle-size distribution
d (mm) p (%) cumulative p (%) d (mm) p (%) cumulative p (%)
0.001 45.40 45.40 0.002 22.50 22.50
0.010 31.40 76.80 0.010   0.00 22.50
0.050   4.00 80.80 0.050 10.90 33.40
0.250   8.40 89.20 0.250 38.70 72.10
2.000 10.80 100.00 2.000 27.90 100.00

d – particle size; p – percentage of fraction

Table 3. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves (3rd, 2nd, and 1st degree) obtained for Example 1 that assumed control points from the particle-size distribution 
curve in logarithmic scale with the uniform nodal vector of parametrization 

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.001) 45.40 1 0 0 0
P1 log(0.01) 76.80 1 4.42 3.59 0.38
P2 log(0.05) 80.80 1 1.09 0.54 0.11
P3 log(0.25) 89.20 1 0.06 0.03 0
P4 log(2) 100.00 1 0 0 0

https://www.agriculturejournals.cz/web/swr/
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approximation curves and the points of the particle-
size distribution curve is therefore 4.42% for the cubic 
curve, 3.59% for the quadratic curve. We consider 
the linear function only for comparison. If there 
is a need to use a linear function, approximation 
can be achieved more quickly using a simple linear 
interpolation.

Example 2 – Control points from particle-size 
distribution curve in logarithmic scale with uni-
form weight and nodal vector of parametrization 
determined by center of gravity method
Determination of  parametrization vector using 
center of gravity method

For the individual degrees of the approximation 
curve under consideration (where we proceed from 
the condition that the degree of the approximation 
curve must be smaller than the number of sections 
of the approximated polygon) n < m, we calculate the 
center of gravity of the partial control polygons. The 
equations for calculating the centroids of individual 
partial polygons are as follows:

T0 = P0

                       , i = 1, ..., m − n 	  (13)

Tm−n+1 = Pm

1

1  
2

i n

i j
j i

T P
n

+

= −

=
+ ∑

For the example with 5 control points m = 4 of the 
control polygon:

For a curve of the 1st degree (n = 1) (2nd order) – 
(linear B-spline)

T0 = P0 = (log(0.001), 45.4) 	

T1 = 1/3(P0 + P1 + P2) = 1/3[(log(0.001), 45.4) + 
+ (log(0.01), 76.8) + (log(0.05), 80.80)] = 
= (log(0.00794), 67.67) 	  

T2 = 1/3(P1 + P2 + P3) = 1/3[ (log(0.01), 76.8) + 
+ (log(0.05), 80.80) + (log(0.25), 89.20)] = 
= (log(0.05), 82.27) 	  

T3 = 1/3(P2 + P3 + P4) = 1/3[(log(0.05), 80.80) + (log(0.25), 
89.20) + (log(2), 100)] = (log(0.2924), 90)

T4 = P4 = (log(2), 100) 	  

The distances of successive centroids are then 
defined by the equation:

li = |Ti−1Ti|, i = 1, ..., m − n + 1

	

	

and the sum of all centroid distances:

 	  

The center of gravity nodal vector of parametri-
zation for the approximation curve is given by the 
equations:

ti = 0, i = 0, ..., n

               , i = n + 1, ..., m − n −1 	  (14)

ti = 1, i = m – n, ..., m

t0 = 0, t1 = 0

( ) ( )( ) ( )2 22
2 1 2  log 0.05 log 0.00794 82.27 67.67 14.62l T T= = − + − =

( ) ( )( ) ( )2 22
3 2 3  log 0.2924 log 0.05 90 82.27 7.77l T T= = − + − =

( ) ( )( ) ( )2 22
1 0 1  log 0.00794 log 0.001 67.67 45.4 22.29l T T= = − + − =

( ) ( )( ) ( )2 22
4 3 4  log 2 log 0.2924 100 90 10.03l T T= = − + − =

( )
4

1

22.29 14.62 7.77 10.03 54.71i
i

L l
=

= = + + + =∑

1

1  
i n

i j
j

t l
L

−

=

= ∑

Figure 3. Control points and approximation curves for 
Example 1 that assumed control points from the particle-si-
ze distribution curve in logarithmic scale with the uniform 
nodal vector of parametrization
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T5 = 1, t6 = 1	

For a curve of the 2nd degree (n = 2) (3rd order) – 
(quadratic B-spline)

T0 = P0 = (log(0.001), 45.4)

T1 = 1/4(P0 + P1 + P2 + P3) = 1/4[(log(0.001), 45.4) + 
+ (log(0.01), 76.8) + (log(0.05), 80.80) + (log(0.25), 
89.20)] = (log(0.0188), 73.05)

T2 = 1/4(P1 + P2 + P3 + P4) = 1/4[ (log(0.01), 76.8) + 
+ (log(0.05), 80.80) + (log(0.25), 89.20) + (log(2), 
100)] = (log(0.12574), 86.7)

T3 = P4 = (log(2), 100)

The distances of successive centroids are then 
defined by the equation:

li = |Ti−1Ti|, i = 1, ..., m − n + 1

 	

 	

 	

and the sum of all centroid distances:

	

The center of gravity nodal vector of parametri-
zation for the approximation curve is given by the 
equations:

ti = 0, i = 0, ..., n

                , i = n + 1, ..., m − n −1	  (15)

2
1  22.29 0.407, 

54.71
t = =

( )3
1  22.29 14.62 0.675, 

54.71
t = + =

( )4
1  22.29 14.62 7.77 0.817,

54.71
t = + + =

( ) ( )( ) ( )2 22
1 0 1  log 0.0188 log 0.001 73.05 45.4 27.68l T T= = − + − =

( ) ( )( ) ( )2 22
3 2 3  log 2 log 0.12574 100 86.7 13.35l T T= = − + − =

( ) ( )( ) ( )2 22
2 1 2  log 0.12574 log 0.0188 86.7 73.05 13.68l T T= = − + − =

1

1  
i n

i j
j

t l
L

−

=

= ∑

ti = 1, i = m – n, ..., m

t0 = 0, t1 = 0, t2 = 0

 	

 	

t5 = 1, t6 = 1, t7 = 1

For a curve of the 3rd degree (n = 3) (4th order) – 
(cubic B-spline)

T0 = P0 = (log(0.001), 45.4)

T1 = 1/5(P0 + P1 + P2 + P3+ P4) = 1/5[(log(0.001), 45.4) + 
+ (log(0.01), 76.8) + (log(0.05), 80.80) + (log(0.25), 
89.20) + (log(2), 100)] = (log(0.04782), 78.44)

T2 = P4 = (log(2), 100)

The distances of successive centroids are then 
defined by the equation:

li = |Ti−1Ti|, i = 1, ..., m − n + 1

 	

 	

and the sum of all centroid distances:

	

The center of gravity nodal vector of parametri-
zation for the approximation curve is given by the 
equations:

ti = 0, i = 0, ..., n

                , i = n + 1, ..., m − n −1

ti = 1, i = m − n, ..., m

t0 = 0, t1 = 0, t2 = 0, , t3 = 0,

	

t5 = 1, t6 = 1, t7 = 1, t8 = 1

3
1  27.68 0.506, 

54.71
t = =

( )4
1  27.68 13.68 0.756, 

54.71
t = + =

( ) ( )( ) ( )2 22
1 0 1  log 0.04782 log 0.001 78.44 45.4 33.08l T T= = − + − =

( ) ( )( ) ( )2 22
2 1 2  log 2 log 0.04782 100 78.44 21.62l T T= = − + − =

( )
2

1

33.08 21.62 54.70i
i

L l
=

= = + =∑

1

1  
i n

i j
j

t l
L

−

=

= ∑

4
1  33.08 0.605, 

54.70
t = =

( )
3

1

27.68 13.68 13.35 54.71i
i

L l
=

= = + + =∑
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Centroids of partial control polygons for degrees 
1, 2 and 3 of the approximation curves are presented 
in Table 4.

After converting the calculated nodes of nodal 
vectors of parametrization to a logarithmic scale, for 
a particle size of 0.001 mm to 2 mm, we get: 

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 5 control points:

t = (−3.0, −3.0, −1.6555, −0.7733, −0.3044, 0.3010, 0.3010)

For a curve of the 2nd degree (3rd order) – (quad-
ratic B-spline) and a sequence of 5 control points:

t = (−3.0, −3.0, −3.0, −1.3299, −0.5047, 0.3010, 0.3010, 
0.3010)

For a curve of the 3rd degree (4th order) – (cubic 
B-spline) and a sequence of 5 control points:

t = (−3.0, −3.0, −3.0, −3.0, −1.0037, 0.3010, 0.3010, 
0.3010, 0.3010)

Resulting approximation curves are shown together 
with the control points of A particle-size distribu-

tion curve in Figure 4. Points of the approximation 
curves are also shown in Table S2 in ESM. Differences 

Table 4. Summary table of centroids of partial control polygons for degrees 1, 2 and 3 of the approximation curve

3rd degree 2nd degree 1st degree
d (mm) cumulative p (%) d (mm) cumulative p (%) d (mm) cumulative p (%)
0.0010 45.40 0.0010 45.40 0.0010 45.40
0.0478 78.44 0.0188 73.05 0.0079 67.67
2.0000 100.00 0.1257 86.70 0.0500 82.27

 2.0000 100.00 0.2924 90.00
  2.0000 100.00

d – particle size; p – percentage of fraction

Table 5. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves (3rd, 2nd, and 1st degree) obtained for Example 2 that assumed control points from the particle-size distribution curve 
in logarithmic scale with the non-uniform nodal vector of parametrization determined by the center of gravity method

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.001) 45.40 1 0 0 0
P1 log(0.01) 76.80 1 4.88 4.27 0.68
P2 log(0.05) 80.80 1 1.08 0.42 0.24
P3 log(0.25) 89.20 1 0.05 0.04 0.01
P4 log(2) 100.00 1 0 0 0

Figure 4. Control points and approximation curves for 
Example 2 that assumed control points from the particle-
-size distribution curve in  logarithmic scale with the 
non-uniform nodal vector of parametrization determined 
by the center of gravity method
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between the control points and the points of the 
approximation curves are shown in Table 5. The 
difference between the points of the approximation 
curves and the points of the particle-size distribution 
curve is therefore 4.88% for the cubic curve, 4.27% 
for the quadratic curve.

The effect of using a non-uniform nodal vector 
of parametrization determined by the center of gravity 
method is negligible, and in many cases the course 
of the approximation curves tends to deteriorate. 
To significantly improve the approximation, it is there-
fore necessary to look for other alternative solutions.

Example 3 – Inserting of  intermediate values 
in the sequence of control points

One of the alternatives for a closer approxima-
tion of the particle-size distribution curves is to 
insert intermediate values in the sequence of control 
points. For embedded values on the summation 
line, the logarithms of the particle size was used. 
Intermediate points of the particle-size distribution 
curve are determined by linear interpolation. For 
approximation, we then have a sequence of 8 points 
of the particle-size distribution curve A. 

Control points Pi for A particle-size distribution 
curve and their weights (for simplicity, we consider, 
for original particle-size distribution curve values, 
uniform weight w = 1 and, for embedded values 
uniform weight w = 0.5) are presented in Table 6.

Uniform nodal vector of parametrization
To simplify the example, first was considered a uni-

form parametrization vector.
For the individual degrees of the curve considered 

(where we proceed from the condition that the degree 

of the approximation curve must be smaller than the 
number of sections of the approximated polygon) 
n < m, we get the following parametrization vectors:

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 8 control points:

t = (−3, −3, −2.5284, −2.0569, −1.5853, −1.1137, 
−0.6421, −0.1706, 0.3010, 0.3010)

where the initial 2 nodes correspond to log(0.001), 
the final 2 nodes correspond to log(2), and the re-
maining 6 nodes equidistantly divide the intermedi-
ate interval.

For a curve of 2nd degree (3rd order) – (quadratic 
B-spline) and a sequence of 8 control points:

t = (−3, −3, −3, −2.4498, −1.8997, −1.3495, −0.7993, 
−0.2491, 0.3010, 0.3010, 0.3010)

where the initial 3 nodes correspond to log(0.001), 
the final 3 nodes correspond to log(2), and the re-
maining 5 nodes equidistantly divide the intermedi-
ate interval.

For a  curve of  3rd degree (4th order) – (cubic 
B-spline) and a sequence of 8 control points:

t = (−3, −3, −3, −3, −2.3398, −1.6796, −1.0194, 
−0.3592, 0.3010, 0.3010, 0.3010, 0.3010)

where the initial 4 nodes correspond to log(0.001), 
the final 4 nodes correspond to log(2), and the re-
maining 4 nodes equidistantly divide the intermedi-
ate interval.

Resulting approximation curves are shown together 
with the control points in Figure 5. Points of the 

Table 6. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves obtained for Example 3 that assumed the uniform nodal vector of parametrization and particle-size distribution 
curve with embedded intermediate values for particle diameter d = 0.0032, 0.0224, and 0.1118 mm by linear interpolation 

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.001) 45.40 1.0 0 0 0
P1 log(0.0032) 61.10 0.5 2.35 0.95 0.80
P2 log(0.01) 76.80 1.0 1.37 0 0.10
P3 log(0.0224) 78.80 0.5 0.05 0.09 0.12
P4 log(0.05) 80.80 1.0 0.22 0.16 0.03
P5 log(0.1118) 85.00 0.5 0 0.01 0.05
P6 log(0.25) 89.20 1.0 0.02 0.02 0.01
P7 log(2) 100.00 1.0 0 0 0
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approximation curves are also shown in Table S3 
in ESM. Differences between the control points and 
the points of the approximation curves are shown 
in Table 6. By using the inserted points, we obtain 
new approximation curves, where the maximum 
difference between the points of the approximation 
curves and the points of the particle-size distribution 
curve for the cubic curve represents 2.35%, for the 
quadratic curve 0.95%.

Example 4 – Experimentally determined parti-
cle-size distribution curve with embedded in-
termediate values by  linear interpolation and 
non-uniform nodal vector of parametrization de-
termined by center of gravity method

Other options for refining the approximation are 
the possibility of changing the weight for the indi-
vidual control points of the approximate polygon, 
as well as the use of the center of gravity method for 
calculating the parametrization vector. The calcula-
tion of the parametrization vector itself is carried out 
analogously to the example without embedded points, 
the particle-size distribution curve given above.

Resulting approximation curves are shown together 
with the control points in Figure 6. Points of the 
approximation curves are also shown in Table S4 

in ESM. Differences between the control points and the 
points of the approximation curves are shown in Table 7. 
By using embedded points and a non-uniform nodal 
vector of parametrization determined by the center 
of gravity method, new approximation curves were 
obtained, where the maximum difference between the 
points of the approximation curves and the points of the 
particle-size distribution curve is 1.94% for the cubic 
curve and 0.86% for the quadratic curve. If it was con-
sidered only the original points of the curve, then the 
maximum difference, for a quadratic curve, is only 0.64%.

Example 5 – Control points from particle-size 
distribution curve in logarithmic scale with uni-
form weight

Control points Pi for B particle-size distribution 
curve and their weights (for simplicity, we consider 
the same weight for all control points: w = 1) are 
shown in Table 8.

Uniform nodal vector of parametrization
To simplify the example, a uniform nodal vector 

of parametrization was cosidered.
For the individual degrees of the approximation 

curve considered (where we proceed from the con-
dition that the degree of the approximation curve 

Figure 5. Control points and approximation curves for 
Example 3 that assumed control points from the particle-si-
ze distribution curve in logarithmic scale with the uniform 
nodal vector of parametrization evaluated using particle-
-size distribution curve with embedded intermediate values 
by linear interpolation

Figure 6. Control points and approximation curves for 
Example 4 that assumed control points from the particle-
-size distribution curve in  logarithmic scale with the 
non-uniform nodal vector of parametrization determined 
by the center of gravity method evaluated using particle-
-size distribution curve with embedded intermediate values 
by linear interpolation
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must be smaller than the number of sections of the 
approximated polygon) n < m, we get the following 
parametrization vectors:

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 5 control points:

t = (−2.6990, −2.6990, −1.9490, −1.1990, −0.4490, 
0.3010, 0.3010)

For a curve of the 2nd degree (3rd order) – (quad-
ratic B-spline) and a sequence of 5 control points:

t = (−2.6990, −2.6990, −2.6990, −1.6990, −0.6990, 
0.3010, 0.3010, 0.3010)

For a curve of the 3rd degree (4th order) – (cubic 
B-spline) and a sequence of 5 control points:

t = (−2.6990, −2.6990, −2.6990, −2.6990, −1.1990, 
0.3010, 0.3010, 0.3010, 0.3010)

Resulting approximation curves are shown together 
with the control points in Figure 7. Points of the 

approximation curves are also shown in Table S5 
in ESM. Differences between the control points and 
the points of the approximation curves are shown 
in Table 8. The difference between the points of the 
approximation curves and the points of the particle-
size distribution curve is therefore 6.94% for the 
cubic curve, 3.46% for the quadratic curve. The linear 
function only for comparison was considered. 

Example 6 – Control points from particle-size 
distribution curve in logarithmic scale with uni-
form weight and nodal vector of parametrization 
determined by center of gravity method
Nodal vector of  parametrization determined 
by center of gravity method

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 5 control points:

t = (−2.6990, −2.6990, −2.5559, −1.9162, −0.9171, 
0.3010, 0.3010)

For a curve of the 2nd degree (3rd order) – (quad-
ratic B-spline) and a sequence of 5 control points:

Table 7. Control points (Pi), their weights, and differences between the control points and the points of the approxima-
tion curves obtained for Example 4 that assumed the non-uniform nodal vector of parametrization determined by the 
center of gravity method and particle-size distribution curve with embedded intermediate values for particle diameter 
d = 0.0032, 0.0224, and 0.1118 mm by linear interpolation

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.001) 45.40 1.0 0 0 0
P1 log(0.0032) 61.10 0.5 1.00 0.86 0.84
P2 log(0.01) 76.80 1.0 1.94 0.64 0.13
P3 log(0.0224) 78.80 0.5 0.05 0 0.08
P4 log(0.05) 80.80 1.0 0.19 0.22 0.16
P5 log(0.1118) 85.00 0.5 0.04 0.02 0.02
P6 log(0.25) 89.20 1.0 0.03 0.02 0
P7 log(2) 100.00 1.0 0 0 0

Table 8. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves (3rd, 2nd, and 1st degree) obtained for Example 5 that assumed control points from the particle-size distribution 
curve in logarithmic scale with the uniform nodal vector of parametrization

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.002) 22.50 1 0.00 0.00 0.00
P1 log(0.01) 22.50 1 2.77 1.86 0.45
P2 log(0.05) 33.40 1 6.94 3.46 0.51
P3 log(0.25) 72.10 1 –3.65 –3.34 –1.01
P4 log(2) 100.00 1 0.00 0.00 0.00
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t = (−2.6990, −2.6990, −2.6990, −2.1126, −1.3626, 
0.3010, 0.3010, 0.3010)

For a curve of the 3rd degree (4th order) – (cubic 
B-spline) and a sequence of 5 control points:

t = (−2.6990, −2.6990, −2.6990, −2.6990, −1.6300, 
0.3010, 0.3010, 0.3010, 0.3010)

Resulting approximation curves are shown together 
with the control points in Figure 8. Points of the 
approximation curves are also shown in Table S6 
in ESM. Differences between the control points and 
the points of the approximation curves are shown 
in Table 9. The difference between the points of the 
approximation curves and the points of the particle-

size distribution curve is therefore 7.03% for the cubic 
curve, 4.02% for the quadratic curve. We consider 
the linear function only for comparison.

Example 7 – Inserting of  intermediate values 
in the sequence of control points

For embedded values on the summation line, we use 
the logarithms of the particle size. Intermediate points 
of the particle-size distribution curve are determined 
by linear interpolation. For approximation, we then 
have a sequence of 8 points of the particle-size dis-
tribution curve B (Table 2).

Control points Pi for B particle-size distribution 
curve and their weights (for simplicity, were con-
sidered, for original particle-size distribution curve 

Figure 7. Control points and approximation curves for 
Example 5 that assumed control points from the particle-si-
ze distribution curve in logarithmic scale with the uniform 
nodal vector of parametrization

Figure 8. Control points and approximation curves for 
Example 6 that assumed control points from the particle-
-size distribution curve in  logarithmic scale with the 
non-uniform nodal vector of parametrization determined 
by the center of gravity method

Table 9. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves (3rd, 2nd, and 1st degree) obtained for Example 6 that assumed control points from the particle-size distribution curve 
in logarithmic scale with the non-uniform nodal vector of parametrization determined by the center of gravity method

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.002) 22.50 1 0.00 0.00 0.00
P1 log(0.01) 22.50 1 2.22 1.74 0.51
P2 log(0.05) 33.40 1 7.03 2.85 1.65
P3 log(0.25) 72.10 1 –4.07 –4.02 –1.43
P4 log(2) 100.00 1 0.00 0.00 0.00
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values, uniform weight w = 1 and, for embedded values 
uniform weight w = 0.5) are presented in Table 10.

Uniform nodal vector of parametrization
To simplify the example, a uniform parametriza-

tion vector was first considered.
For the individual degrees of the curve considered 

(where we proceed from the condition that the degree 
of the approximation curve must be smaller than the 
number of sections of the approximated polygon) 
n < m, the following parametrization vectors was get:

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.2704, −1.8418, −1.4133, 
−0.9847, −0.5561, −0.1275, 0.3010, 0.3010)

where the initial 2 nodes correspond to log(0.002), the 
final 2 nodes correspond to log(2), and the remaining 
6 nodes equidistantly divide the intermediate interval.

For a curve of 2nd degree (3rd order) – (quadratic 
B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.6990, −2.19897, −1.6990, 
−1.1990, −0.6990, −0.1990, 0.3010, 0.3010, 0.3010)

where the initial 3 nodes correspond to log(0.002), 
the final 3 nodes correspond to log(2), and the re-
maining 5 nodes equidistantly divide the intermedi-
ate interval.

For a  curve of  3rd degree (4th order) – (cubic 
B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.6990, −2.6990, −2.0990, −1.4990, 
−0.8990, −0.2990, 0.3010, 0.3010, 0.3010, 0.3010)

where the initial 4 nodes correspond to log(0.002), 
the final 4 nodes correspond to log(2), and the re-
maining 4 nodes equidistantly divide the intermedi-
ate interval.

Resulting approximation curves are shown together 
with the control points in Figure 9. Points of the ap-
proximation curves are also shown in Table S7 in ESM. 
Differences between the control points and the points 
of the approximation curves are shown in Table 10. By us-
ing the embedded points, a new approximation curves 
was obtained, where the maximum difference between 

Table 10. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves obtained for Example 7 that assumed the uniform nodal vector of parametrization and particle-size distribution 
curve with embedded intermediate values for particle diameter d = 0.0045, 0.0224 and 0.1118 mm by linear interpolation

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.002) 22.50 1.0 0.00 0.00 0.00
P1 log(0.0045) 22.50 0.5 –0.05 0.00 0.00
P2 log(0.01) 22.50 1.0 –0.70 –0.47 –0.54
P3 log(0.0224) 27.95 0.5 0.03 0.08 0.05
P4 log(0.05) 33.40 1.0 –1.55 –1.11 –0.17
P5 log(0.1118) 52.75 0.5 0.14 0.30 0.22
P6 log(0.25) 72.10 1.0 2.23 1.52 0.27
P7 log(2) 100.00 1.0 0.00 0.00 0.00

Figure 9. Control points and approximation curves for 
Example 7 that assumed control points from the particle-si-
ze distribution curve in logarithmic scale with the uniform 
nodal vector of parametrization evaluated using particle-
-size distribution curve with embedded intermediate values 
by linear interpolation
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the points of the approximation curves and the points 
of the particle-size distribution curve for the cubic curve 
represents 1.55% and for the quadratic curve 1.52%.

Example 8 – Experimentally determined parti-
cle-size distribution curve with embedded in-
termediate values by  linear interpolation and 
non-uniform nodal vector of parametrization de-
termined by center of gravity method

In this example is determined, for refining the 
approximation, non-uniform nodal vector of para-
metrization by center of gravity method. The calcu-
lation of the parametrization vector itself is carried 
out analogously to the example without embedded 
points given above (Example 2). For approximation, 
there was a sequence of 8 points of the particle-size 
distribution curve B (Table 2).

Control points Pi for B particle-size distribution 
curve and their weights (for simplicity, it was consid-
ered, for original particle-size distribution curve val-
ues, uniform weight w = 1 and, for embedded values, 
uniform weight w = 0.5) are presented in Table 11.

Non uniform nodal vector of parametrization de-
termined by center of gravity method

For a curve of the 1st degree (2nd order) – (linear 
B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.6855, −2.6143, −2.4737, 
−2.0853, −1.5186, −0.6637, 0.3010, 0.3010)

For a curve of the 2nd degree (3rd order) – (quad-
ratic B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.6990, −2.6425, −2.5364, 
−2.2439, −1.7646, −1.0685, 0.3010, 0.3010, 0.3010)

For a curve of the 3rd degree (4th order) – (cubic 
B-spline) and a sequence of 8 control points:

t = (−2.6990, −2.6990, −2.6990, −2.6990, −2.5697, 
−2.3354, −1.9517, −1.3524, 0.3010, 0.3010, 
0.3010, 0.3010)

Resulting approximation curves are shown together 
with the control points in Figure 10. Points of the 
approximation curves are also shown in Table S8 

Figure 10. Control points and approximation curves for 
Example 8 that assumed control points from the particle-
-size distribution curve in  logarithmic scale with the 
non-uniform nodal vector of parametrization determined 
by center of gravity method, evaluated using particle-size 
distribution curve with embedded intermediate values 
by linear interpolation

Table 11. Control points (Pi), their weights, and differences between the control points and the points of the approximation 
curves obtained for Example 8 that assumed the non-uniform nodal vector of parametrization and particle-size distribution 
curve with embedded intermediate values for particle diameter d = 0.0045, 0.0224 and 0.1118 mm by linear interpolation

Pi X = log(d) Y = cumulative p 
(%) Weight

3rd degree curve 2nd degree curve 1st degree curve
(%)

P0 log(0.002) 22.50 1.0 0.00 0.00 0.00
P1 log(0.0045) 22.50 0.5 0.35 –0.28 0.00
P2 log(0.01) 22.50 1.0 –0.63 –0.89 –0.54
P3 log(0.0224) 27.95 0.5 0.06 0.14 0.05
P4 log(0.05) 33.40 1.0 –1.34 –1.06 –0.17
P5 log(0.1118) 52.75 0.5 0.20 0.07 0.22
P6 log(0.25) 72.10 1.0 3.13 1.93 0.27
P7 log(2) 100.00 1.0 0.00 0.00 0.00
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in ESM. Differences between the control points and 
the points of the approximation curves are shown 
in Table 11. By using the embedded points, we obtain 
new approximation curves, where the maximum 
difference between the points of the approximation 
curves and the points of particle-size distribution 
curve for the cubic curve represents 3.13% and for 
the quadratic curve 1.93%.

It could be concluded that for the approximation 
of particle-size distribution curve was chosen approxi-
mative NURBS curve. It brings, into standard B-spline 
curve, rational elements in the form of weights of each 
single controlling point and aspect of non-uniformity 
in the form of nod vector of parametrization. In con-
trast to standard B-spline curve it makes it possible 
through weights of single controlling points to influ-
ence the final shape of approximation. Together with 
node vector of parametrization to determine location 
of each point, where there are joint single segments 
of approximation curve. It is necessary to mention 
key features of approximation curve, where polygon 
formed by sequence of check points do not correspond 
with a standard texture curve with experimentally 
determined breaking points and is forming convex 
envelope of the final NURBS curve. It means that also 
the final NURBS curve respects character of particle 
size cumulative curve.

It was found that NURBS curves represent the 
key generalization of B-spline curves. It could make 
it possible to construct particle size cumulative curves 
with emphasis on all its variants and restrain a cru-
cial shortage of approximation represented by lack 
of control points.

CONCLUSION

Approximation of particle-size distribution curves 
by means of B-spline curves, or their generalized 
NURBS variant, using weights for individual points 
of the curve and a non-uniform nodal vector of para-
metrization representing the division of  the ap-
proximate polygon of the particle-size distribution 
curve into sub-polygons, enables the derivation 
of a smooth and continuous curve. However, the 
construction of the approximation curve is primarily 
dependent on the limited number of points of the 
experimentally determined particle-size distribution 
curves, and for curves with significant breaks in the 
course, one must consider either a lower accuracy 

of the approximation or the necessity of “improving” 
the approximation using the weights of individual 
points, inserting additional points or working with 
a nodal vector of parametrization. For basic ap-
proximation, the PUGIS system offers automatic 
approximation using all variants mentioned in the 
text, as well as the possibility of individual changes 
in the weights of control points, in their number and 
position, and in the nodal vector of parametrization.
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