Soil & Water Res., 2015, 10(3):181-188 | DOI: 10.17221/281/2014-SWR
Using basalt flour and brown algae to improve biological properties of soil contaminated with cadmiumOriginal Paper
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
In order to achieve homeostasis of soil, the potential of alleviating substances (two innovative: basalt flour and brown algae extract against two classic compounds: barley straw and compost) were analyzed in soil contaminated with cadmium. The studies thus determined the activity of urease, number of ammonification bacteria, nitrogen-immobilizing bacteria, Arthrobacter sp., Azotobacter sp., and spring barley yield. The analyzed parameters were presented as the following indices: RS - resistance of soil; EF - fertilization effect of an alleviating substance; and R:S - rhizosphere effect. Cadmium was applied as CdCl2∙2.5H2O at the following doses: 0, 4, 40, 80, 120, 160, and 200 mg Cd2+/kgof soil. Straw increased the values of most examined parameters, mainly at lower doses of cadmium. Among the cultivated plants, resistance was most stimulated by compost. Basalt flour and brown algae extract did not play a major role in the recovery of contaminated soil. Ammonification bacteria were the least sensitive to stress associated with the deposition of cadmium in soil, whereas Azotobacter sp. was the most sensitive. Urease was found to be a reliable indicator of soil condition.
Keywords: cadmium; fertilizing substances; microorganisms; soil; urease
Published: September 30, 2015 Show citation
References
- Abalos D., Sanz-Cobena A., Misselbrook T., Vallejo A. (2012): Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere, 89: 310-318.
Go to original source...
Go to PubMed...
- Alef K., Nannipieri P. (1998): Methods in Applied Soil Microbiology and Biochemistry. London, Academic Press, Harcourt Brace & Company.
- Anda M., Shamshuddin J., Fauziah C.I., Omar S.R. (2009): Dissolution of ground basalt and its effect on oxisol chemical properties and cocoa growth. Soil Science, 174: 264-271.
Go to original source...
- Badía D., Marti C., Aguirre J.A. (2013): Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Science of the Total Environment, 465: 233-239.
Go to original source...
Go to PubMed...
- Borowik A., Wyszkowska J., Kucharski J., Baĉmaga M., Tomkiel M. (2014): Pressure exerted by zinc on the nitrification process. Journal of Elementology, 19: 327-338.
Go to original source...
- Èechmánková J., Vácha R., Skála J., Havelková M. (2011): Heavy metals phytoextraction from heavily and moderately contaminated soil by field crops grown in monoculture and crop rotation. Soil and Water Research, 6: 120-130.
Go to original source...
- Cordero B., Lodeiro P., Herrero R., Sastre de Vicente E.M. (2004): Biosorption of cadmium by Fucus spiralis. Environmental Chemistry, 1: 180-187.
Go to original source...
- EMEP/EEA (2013): EMEP/EEA Air Pollutant Emission Inventory Guidebook. Luxembourg, Publications Office of the European Union. Available at http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (accessed Feb 5, 2014).
- Griffiths B.S., Phillipot L. (2013): Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37: 112-129.
Go to original source...
Go to PubMed...
- Irfan M., Hayat S., Ahmad H.A., Alyemeni M.N. (2013): Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20: 1-10.
Go to original source...
Go to PubMed...
- Kucharski J., Wieczorek K., Wyszkowska J. (2011): Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. Journal of Elementology, 16: 577-589.
Go to original source...
- MacFarlane G.R., Burchett M.D. (2001): Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 42: 233-240.
Go to original source...
Go to PubMed...
- Maksymiec W., Wójcik M., Krupa Z. (2007): Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66: 421-427.
Go to original source...
Go to PubMed...
- Orwin K.H., Wardle D.A. (2004): New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology & Biochemistry, 36: 1907-1912.
Go to original source...
- Pan J., Yu L. (2011): Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37: 1889-1894.
Go to original source...
- Renella G., Egamberiyeva D., Landi L., Mench M., Nanipieri P. (2006): Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biology & Biochemistry, 38: 702-708.
Go to original source...
- Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A. (2006): Biosorption with algae: a statistical review. Critical Reviews in Biotechnology, 26: 223-35
Go to original source...
Go to PubMed...
- Ruyters S., Mertens J., Springael D., Smolders E. (2010): Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress. Soil Biology & Biochemistry, 42: 766-772.
Go to original source...
- Shammshuddin J., Anda N., Fauziah C.I., Omar Syed S.R. (2011): Growth of cocoa planted on highly weathered soil as affected by application of basalt and/or compost. Communications in Soil Science and Plant Analysis, 42: 2751-2766.
Go to original source...
- Singha D.D., Anoop S., Gupta A.P. (1998): Nitrogen transformation in sewage - sludge amended soil as influenced by addition of zinc, cadmium, and nickel. The Indian Journal of Agricultural Sciences, 68: 96-100.
- Speir T. W., Kettles H.A., Percival H.J., Parshotam A. (1999): Is soil acidification the cause of biochemical responses when soils are amended with soil heavy metal salts? Soil Biology & Biochemistry, 31: 1953-1961.
Go to original source...
- StatSoft Inc. (2012): Statistica. Version 10.0. Available at www.statsoft.com
- Tejada M. (2009): Application of different organic wastes in a soil polluted by cadmium: Effects on soil biological properties. Geoderma, 153: 254-268.
Go to original source...
- Wang J., Lu Y, Shen G. (2007): Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure. Environmental Geology, 51: 1221-1228.
Go to original source...
- Wenhao Y., Hong H., Mei R., Wuzhong N. (2013): Changes of microbial properties in (near) rhizosphere soils after phytoextraction by Sedum alfredii H: A rhizobox approach with an artificial Cd-contaminated soil. Applied Soil Ecology, 72: 14-21.
Go to original source...
- Wyszkowski M., Wyszkowska J. (2009): The effect of soil contamination with cadmium on the growth and chemical composition of spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresenius Environmental Bulletin, 18: 1046-1053.
- Wyszkowska J., Boros E., Kucharski J. (2007): Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant, Soil and Environment, 53: 544-552.
Go to original source...
- Wyszkowska J., Borowik A., Kucharski J., Baĉmaga M., Tomkiel M., Boros-Lajszner E. (2013a): The effect of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant, Soil and Environment, 59: 500-504.
Go to original source...
- Wyszkowska J., Borowik A., Kucharski M., Kucharski J. (2013b): Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. Journal of Elementology, 18: 769-796.
- Yoshida N., Kieda R., Okuno T. (2006): Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Bioresource Technology, 97: 1843-1849.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.