Soil & Water Res., 2015, 10(4):210-217 | DOI: 10.17221/122/2015-SWR
Impact of evapotranspiration on diurnal discharge fluctuation determined by the Fourier series model in dry periodsOriginal Paper
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Precise measurements of discharges at the outlet of a small catchment, using high resolution sensing equipment, can currently be done without difficulty. In particular, measurements can take place even during dry periods, when high temperatures increase actual evapotranspiration on the catchment and diurnal streamflow fluctuation changes occur in a harmonic wave at any time of the day. Some 10-15 years ago, a current runoff measurement record based on a high resolution equipment clearly recognizing a diurnal wave-shape fluctuation could hardly be available. The measurement of discharge ordinates from the catchment, and from free water pan evaporation, showed an undulating fluctuation tendency. However, the discharge minima appeared at day time and their maxima at night. The measured discharge data are represented not only by a fluctuating form, but also by a mild form, an even straight line, or by a flat depletion curve. For the purpose of analyzing the wave shape of discharge we implemented the Fourier series model, simulating the measured data through the Fourier input, output, and transformation coefficients. The purpose of this analysis was to use the Fourier equations in order to substitute the missing data (when the discharge or evaporation measurements collapsed). Due to very sensitive data, when the measured discharge series are jagged, the equation can be smoothed by the harmonic approximation or by the polynomial approximation. Our study was carried out on the small experimental catchment of the Starosuchdolsky Brook, in the vicinity of the campus of the Czech University of Life Sciences Prague. The harmonic analysis provided an interesting outcome, as well as innovative methodology.
Keywords: catchment depletion curve; Fourier series; harmonic coefficients; high resolution sensing; rainless periods
Published: December 31, 2015 Show citation
References
- Banasik K., Krajewski A., Sikorska A., Hejduk L. (2014): Curve Number estimation for a small urban catchment from recorded rainfall-runoff events. Archives of Environmental Protection, 40: 75-86.
Go to original source...
- Beven K.J. (2006): Rainfall-Runoff Modelling: The Primer. Chichester, John Wiley & Sons.
- Beven K. (2010): Do we need research results from small basins for the further development of hydrological models? In: Proc. Status and Perspectives of Hydrology in Small Basins. Mar 30-Apr 2, 2009, Goslar-Hahnenklee, IAHS Publ. No. 336: 279-285.
- Boronina A., Golubev S., Balderer W. (2005): Estimation of actual evapo-transpiration from an alluvial aquifer of the Kouris catchment (Cyprus) using continous streamflow records. Hydrological Processes, 19: 4055-4068.
Go to original source...
- Brown E.A., Zhang L., McMahon A.T., Western W.A., Vertessy A.R. (2004): A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310: 28-61.
Go to original source...
- Brutsaert W., Nieber J.L. (1977): Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13: 637-643.
Go to original source...
- Burt T.P. (1979): Diurnal variations in stream discharge and throughflow during a period of low flow. Journal of Hydrology, 41: 291-301.
Go to original source...
- Deutscher J., Kupec P. (2014): Monitoring and validating the temporal dynamics of interday streamflow from two upland head micro-watersheds with different vegetative conditions during dry periods of growing season on the Bohemian Massif, Czech Republic. Environmental Monitoring and Assessment, 186: 3837-3846.
Go to original source...
Go to PubMed...
- Dvořáková S., Zeman J. (2010): Analysis of fluctuation in the stream water level during the dry season in forested areas. Scientia Agriculturae Bohemica, 41: 218-224.
- Dvořáková S., Kovář P., Zeman J. (2012): Implementation of conceptual linear storage model of runoff with diurnal fluctuation of discharges in rainless periods. Journal of Hydrology and Hydromechanics, 60: 217-226.
Go to original source...
- Dvořáková S., Kovář P., Zeman J. (2014): Impact of evatranspiration on discharge in small catchments. Journal of Hydrology and Hydromechamics, 62: 285-292.
Go to original source...
- Fenicia F., Savenije H.H.G., Matgen P., Pfister L. (2006): Is the groundwater reservoir linear? Learning from data in hydrological modelling. Hydrology and Earth System Sciences, 10: 139-150.
Go to original source...
- Hardy G.H., Rogosinski W.W. (1971): Fourier Series. Prague, SNTL/ALFA.
- Kirchner J.W. (2006): Getting the right answers for the right reasons: Linking measurements, analyses and models to advance the science of hydrology. Water Resources Research, 42: W03S04.
Go to original source...
- Kirchner J.W. (2009) Catchment as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45: W02429.
Go to original source...
- Kovář P., Dvořáková S., Pešková J., Zeman J., Doležal F., Sůva M. (2014a): Application of harmonic analysis for evapotranspiration of riparian vegetation in dry periods. The Case study of the Starosuchdolsky Brook catchment. In: Proc. Conf. Hydrology of Small Catchments, Prague, April 22-24, Volume 1: 230-257. (in Czech)
- Kovar P., Krovak F., Rous V., Bily M., Salek M., Vassova D., Hrabalikova M., Tejnecky V., Drabek O., Bazatova T., Peskova J. (2014b): An appraisal of the effectiveness of nature- close torrent control methods - Jindrichovicky Brook case study. Ecohydrology, 7: 1281-1296.
Go to original source...
- Kraijenhoff van de Leur D.A., O'Donnell T.O. (1966): Recent Trends in Hydrograph Synthesis. In: Proc. Technical Meeting 21. TNO 13, The Hague.
- Krajewski A., Lee H., Hejduk L., Banasik K. (2014): Predicted small catchment responses to heavy rainfalls with SEGMO and two sets of model parameters. Annals of Warsaw University of Life Sciences - SGGW, Poland. Land Reclamation, 46: 205-220.
Go to original source...
- Langhammer J., Vilimek V. (2008): Landscape changes as a factor affecting the course and consequences of extreme floods in the Otava river basin, Czech Republic. Environmental Monitoring and Assessment, 144: 53-66.
Go to original source...
Go to PubMed...
- Loheide S.P., Butler J.R.J., Gorelick S.M. (2005): Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resources Research, 41: W07030.
Go to original source...
- Mutzner R., Weijs S.V., Tarolli P., Calaf M., Oldroyd H.J., Parlange M.B. (2015): Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment. Water Resources Research, 51: 3403-3418.
Go to original source...
- Nash J.E., Sutcliffe J.V. (1970): River flow forecasting through conceptual models. Journal of Hydrology, 10: 282-290.
Go to original source...
- O'Donnell T.O. (1960): Instantaneous unit hydrograph derivation by harmonic analysis. Ashbrook catchment, Wallingford Research Station, IAHS Publ. No. 51, Vol. 3: 546-557.
- Szilagyi J., Gribovszki Z., Kalicz P. (2007): Estimation of catchment-scale evapotranspiration from baseflow recession data: Numerical model and practical application results. Journal of Hydrology, 336: 206-217.
Go to original source...
- Tallaksen L.M. (1995): A review of baseflow recession analysis. Journal of Hydrology, 165: 349-370.
Go to original source...
- Winsemius H.C., Savenije H.H.G., Gerrits A.M.J., Zapreeva E.A., Kless R. (2006): Comparison of two model approaches in the Zambezi river basin with regard to model reliability and identifiability, Hydrology and Earth System Sciences, 10: 339-352.
Go to original source...
- WMO (1992): Simulated Real-time Intercomparison of Hydrological Models. WMO No. 779, Operational Hydrology 38, Geneva.
- Zhang L., Dawes W.R., Walker G.R. (2001): Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37: 7001-7708.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.