Soil & Water Res., 2018, 13(2):83-89 | DOI: 10.17221/81/2017-SWR

Digitization and mapping of national legacy soil data of MontenegroOriginal Paper

Edin SALKOVIĆ1, Igor DJUROVIĆ1, Mirko KNEŽEVIĆ2, Vesna POPOVIĆ-BUGARIN1, Ana TOPALOVIĆ2
1 Faculty of Electrical Engineering and
2 Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro

This paper describes the process of digitizing Montenegro's legacy soil data, and an initial attempt to use it for digital soil mapping (DSM) purposes. The handwritten legacy numerical records of physical and chemical properties for more than 10 000 soil profiles and semi-profiles covering whole Montenegro have been digitized, and, out of those, more than 3000 have been georeferenced. Problems and challenges of digitization addressed in the paper are: processing of non-uniform handwritten numerical records, parsing a complex textual representation of those records, georeferencing the records using digitized (scanned) legacy soil maps, creating a single computer database containing all digitized records, transforming, cleaning and validating the data. For an initial assessment of the suitability of these data for mapping purposes, inverse distance weighting (IDW), ordinary kriging (OK), multiple linear regression (LR), and regression-kriging (RK) interpolation models were applied to create thematic maps of soil phosphorus. The area chosen for mapping is a 400 km2 area near the city of Cetinje, containing 125 data points. LR and RK models were developed using publicly available digital elevation model (DEM) data and satellite global land survey (GLS) data as predictor variables. The digitized phosphorus quantities were normalized and scaled. The predictor variables were scaled, and principal component analysis was performed. For the best performing RK model an R2 value of 0.23 was obtained.

Keywords: digital elevation model; georeferencing; kriging; multiple linear regression; parsing; soil phosphorus

Published: June 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SALKOVIĆ E, DJUROVIĆ I, KNEŽEVIĆ M, POPOVIĆ-BUGARIN V, TOPALOVIĆ A. Digitization and mapping of national legacy soil data of Montenegro. Soil & Water Res. 2018;13(2):83-89. doi: 10.17221/81/2017-SWR.
Download citation

References

  1. Arrouays D., Leenaars J.G., Richer-de-Forges A.C., Adhikari K., Ballabio C., Greve M., Grundy M., Guerrero E., Hempel J., Hengl T., Heuvelink G., Batjes N., Carvalho E., Hartemink A., Hewitt A., Hong S.-Y., Krasilnikov P., Lagacherie P., Lelyk G., Libohova Z., Lilly A., McBratney A., McKenzie N., Vasquez G.M., Mulder V.L., Minasny B., Montanarella L., Odeh I., Padarian J., Poggio L., Roudier P., Saby N., Savin I., Searle R., Solbovoy V., Thompson J., Smith S., Sulaeman Y., Vintila R., Rossel R. V., Wilson P., Zhang G.-L., Swerts M., Oorts K., Karklins A., Feng L., Ibelles Navarro A.R., Levin A., Laktionova T., Dell'Acqua M., Suvannang N., Ruam W., Prasad J., Patil N., Husnjak S., Pásztor L., Okx J., Hallett S., Keay C., Farewell T., Lilja H., Juilleret J., Marx S., Takata Y., Kazuyuki Y., Mansuy N., Panagos P., Van Liedekerke M., Skalsky R., Sobocka J., Kobza J., Eftekhari K., Alavipanah S. K., Moussadek R., Badraoui M., Da Silva M., Paterson G., Conceição Gonçalves M. da, Theocharopoulos S., Yemefack M., Tedou S., Vrscaj B., Grob U., Kozák J., Boruvka L., Dobos E., Taboada M., Moretti L., Rodriguez D. (2017): Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14: 1-19. Go to original source... Go to PubMed...
  2. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, 8: 2271-2312. Go to original source...
  3. Cressie N. (2015): Statistics for Spatial Data. New York, John Wiley & Sons.
  4. Egnér H., Riehm H., Domingo W.R. (1960): Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler, 26: 204-209.
  5. Ferranti J. de (2014): Worldwide 3" DEM. Available at http://www.viewfinderpanoramas.org/dem3.html (accessed May 2015)
  6. Fuštić B., Đuretić G. (2000): The Soils of Montenegro. Podgorica, University of Montenegro. (in Montenegrin)
  7. Hengl T. (2009): A Practical Guide to Geostatistical Mapping. Amsterdam, University of Amsterdam.
  8. Hengl T., Husnjak S. (2006): Evaluating adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, 70: 920-929. Go to original source...
  9. Hengl T., Rossiter D. G., Husnjak S. (2002): Mapping soil properties from an existing national soil data set using freely available ancillary data. In: Proc. 17th World Congress of Soil Science. Bangkok, IUSS: 1140-1-1140-10.
  10. Hengl T., de Jesus J.M., MacMillan R.A., Batjes N.H., Heuvelink G.B.M., Ribeiro E., Samuel-Rosa A., Kempen B., Leenaars J.G.B., Walsh M.G., Gonzalez M.R. (2014): SoilGrids1km - global soil information based on automated mapping. PLoS ONE, 9: 1-17. Go to original source... Go to PubMed...
  11. Hiemstra P.H., Pebesma E.J., Twenhöfel C.J.W., Heuvelink G.B.M. (2008): Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Computers & Geosciences, 35: 1711-1721. Go to original source...
  12. Keshavarzi A., Sarmadian F., Omran E.-S.E., Iqbal M. (2015): A neural network model for estimating soil phosphorus using terrain analysis. The Egyptian Journal of Remote Sensing and Space Science, 18: 127-135. Go to original source...
  13. King J.R., Jackson D.A. (1999): Variable selection in large environmental data sets using principal components analysis. Environmetrics, 10: 67-77. Go to original source...
  14. Liu Z.-P., Shao M.-A., Wang Y.-Q. (2013): Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 197: 67-78. Go to original source...
  15. McBratney A.B., Mendonça Santos M.L., Minasny B. (2003): On digital soil mapping. Geoderma, 117: 3-52. Go to original source...
  16. R Core Team (2015): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing.
  17. Roger A., Libohova Z., Rossier N., Joost S., Maltas A., Frossard E., Sinaj S. (2014): Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 217: 26-36. Go to original source...
  18. Rubaek G.H., Kristensen K., Olesen S.E., Østergaard H.S., Heckrath G. (2013): Phosphorus accumulation and spatial distribution in agricultural soils in Denmark. Geoderma, 209: 241-250. Go to original source...
  19. Sarmadian F., Keshavarzi A., Rooien A., Iqbal M., Zahedi G., Javadikia H. (2014): Digital mapping of soil phosphorus using multivariate geostatistics and topographic information. Australian Journal of Crop Science, 8: 1216-1223.
  20. Schachtman D.P., Reid R.J., Ayling S.M. (1998): Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116: 447-453. Go to original source... Go to PubMed...
  21. Shepard D. (1968): A two-dimensional interpolation function for irregularly-spaced data. In: Proc. 23rd ACM National Conf. New York, ACM: 517-524. Go to original source...
  22. Topalović A., Pfendt L.B., Perović N., Đorđević D., Trifunović S., Pfendt P.A. (2006): The chemical characteristics of soil which determine phosphorus partitioning in highly calcareous soils. Journal of the Serbian Chemical Society, 71: 1219-1236. Go to original source...
  23. USGS (2008a): Collection Name: Global Land Survey, Epoch: 1975, Sensor name: Landsat MSS, Image Name: 60 meter scene p201r030_3dm19780706. Sioux Falls, United States Geological Survey.
  24. USGS (2008b): Collection Name: Global Land Survey, Epoch: 1990, Sensor name: Landsat TM, Image Name: 60 meter scene p187r031_5dt19870724. Sioux Falls, United States Geological Survey.
  25. Vrščaj B., Prus T., Lobnik F. (2005): Soil Information and soil data use in Slovenia. In: Jones R. J., Houšková B., Bullock P., Montanarella L. (eds): Soil Resources of Europe. 2nd Ed. Luxembourg, Office for Official Publications of the European Communities: 331-344.
  26. Wang Y., Zhang X., Huang C. (2009): Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150: 141-149. Go to original source...
  27. Xiao R., Bai J., Gao H., Huang L., Deng W. (2012): Spatial distribution of phosphorus in marsh soils of a typical land/inland water ecotone along a hydrological gradient. Catena, 98: 96-103. Go to original source...
  28. Yang X., Post W.M., Thornton P.E., Jain A. (2013): The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences, 10: 2525-2537. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.